Data Analysis Strategies in Medical Imaging

被引:116
|
作者
Parmar, Chintan [1 ]
Barry, Joseph D. [2 ]
Hosny, Ahmed [1 ]
Quackenbush, John [2 ,3 ]
Aerts, Hugo J. W. L. [1 ,4 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiat Oncol, Boston, MA USA
[2] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[3] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiol, Boston, MA USA
关键词
NEURAL-NETWORKS; RADIOMICS; NODULES; CLASSIFIERS; INFORMATION; EXPRESSION; PREDICTION; BIOMARKERS; FEATURES;
D O I
10.1158/1078-0432.CCR-18-0385
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Radiographic imaging continues to be one of the most effective and clinically useful tools within oncology. Sophistication of artificial intelligence has allowed for detailed quantification of radiographic characteristics of tissues using pre-defined engineered algorithms or deep learning methods. Precedents in radiology as well as a wealth of research studies hint at the clinical relevance of these characteristics. However, critical challenges are associated with the analysis of medical imaging data. Although some of these challenges are specific to the imaging field, many others like reproducibility and batch effects are generic and have already been addressed in other quantitative fields such as genomics. Here, we identify these pitfalls and provide recommendations for analysis strategies of medical imaging data, including data normalization, development of robust models, and rigorous statistical analyses. Adhering to these recommendations will not only improve analysis quality but also enhance precision medicine by allowing better integration of imaging data with other biomedical data sources. (C) 2018 AACR.
引用
收藏
页码:3492 / 3499
页数:8
相关论文
共 50 条
  • [1] Medical Imaging Data Strategies for Catalyzing AI Medical Device Innovation
    Samala, Ravi K.
    Gallas, Brandon D.
    Zamzmi, Ghada
    Juluru, Krishna
    Khan, Amir
    Bahr, Catherine
    Ochs, Robert
    Carranza, Dorn
    Granstedt, Jason
    Margerrison, Edward
    Badano, Aldo
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
  • [2] Computing support for advanced medical data analysis and imaging
    Wislicki, Wojciech
    Bednarski, Tomasz
    Bialas, Piotr
    Czerwinski, Eryk
    Kaplon, Lukasz
    Kochanowski, Andrzej
    Korcyl, Grzegorz
    Kowal, Jakub
    Kowalski, Pawel
    Kozik, Tomasz
    Krzemien, Wojciech
    Molenda, Marcin
    Moskal, Pawel
    Niedzwiecki, Szymon
    Palka, Marek
    Pawlik-Niedzwiecka, Monika
    Raczynski, Lech
    Rudy, Zbigniew
    Salabura, Piotr
    Sharma, Neha Gupta
    Silarski, Michal
    Slomski, Artur
    Smyrski, Jerzy
    Strzelecki, Adam
    Wieczorek, Anna
    Zielinski, Marcin
    Zon, Natalia
    BIO-ALGORITHMS AND MED-SYSTEMS, 2014, 10 (02) : 53 - 58
  • [3] Compression strategies for the chemometric analysis of mass spectrometry imaging data
    Bedia, Carmen
    Tauler, Roma
    Jaumot, Joaquim
    JOURNAL OF CHEMOMETRICS, 2016, 30 (10) : 575 - 588
  • [4] Radiation Minimization Strategies for Medical Imaging
    Redberg, Rita F.
    JAMA INTERNAL MEDICINE, 2013, 173 (11) : 1021 - 1037
  • [5] An interactive medical imaging solution for cephalometry with data acquisition and analysis
    Varadarajan, A
    Ramamurthy, A
    Swaminathan, M
    Muthukumaran, B
    Alamelu, SM
    Venkatachalapathi, A
    WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL 1, PROCEEDINGS: INFORMATION SYSTEMS DEVELOPMENT, 2001, : 173 - 177
  • [6] Topological data analysis in medical imaging: current state of the art
    Yashbir Singh
    Colleen M. Farrelly
    Quincy A. Hathaway
    Tim Leiner
    Jaidip Jagtap
    Gunnar E. Carlsson
    Bradley J. Erickson
    Insights into Imaging, 14
  • [7] Topological data analysis in medical imaging: current state of the art
    Singh, Yashbir
    Farrelly, Colleen M.
    Hathaway, Quincy A.
    Leiner, Tim
    Jagtap, Jaidip
    Carlsson, Gunnar E.
    Erickson, Bradley J.
    INSIGHTS INTO IMAGING, 2023, 14 (01)
  • [8] REGRESSION AND RECURSIVE PARTITION STRATEGIES IN THE ANALYSIS OF MEDICAL SURVIVAL-DATA
    CIAMPI, A
    LAWLESS, JF
    MCKINNEY, SM
    SINGHAL, K
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 1988, 41 (08) : 737 - 748
  • [9] Exploring data reduction strategies in the analysis of continuous pressure imaging technology
    Mingkai Peng
    Danielle A. Southern
    Wrechelle Ocampo
    Jaime Kaufman
    David B. Hogan
    John Conly
    Barry W. Baylis
    Henry T. Stelfox
    Chester Ho
    William A. Ghali
    BMC Medical Research Methodology, 23
  • [10] Exploring data reduction strategies in the analysis of continuous pressure imaging technology
    Peng, Mingkai
    Southern, Danielle A.
    Ocampo, Wrechelle
    Kaufman, Jaime
    Hogan, David B.
    Conly, John
    Baylis, Barry W.
    Stelfox, Henry T.
    Ho, Chester
    Ghali, William A.
    BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)