Application of Dirichlet-to-Neumann Map Boundary Condition for Low-Frequency Electromagnetic Problems

被引:2
|
作者
Efremov, Anton [1 ]
Ventre, Salvatore [2 ]
Udpa, Lalita [1 ]
Tamburrino, Antonello [1 ,2 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[2] Univ Cassino & Southern Lazio, Dept Elect & Informat Engn, I-03043 Cassino, Italy
关键词
Boundary conditions; Dirichlet-to-Neumann (DtN) operator; eddy currents; finite element analysis; nondestructive testing; TRIFOU; CODE;
D O I
10.1109/TMAG.2020.3018482
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we present a differential formulation combined with an exact boundary condition based on a Dirichlet-to-Neumann (DtN) operator, and its applications to eddy current problems. A numerical model for the eddy current problem is derived using a reduced vector potential formulation combined with analytic expression of a DtN operator on an appropriate canonical boundary. The main advantage of this method is the improved accuracy and reduced computational cost compared to conventional approaches. The effectiveness of the proposed formulation is demonstrated in eddy current nondestructive testing applications for predicting the induced current density distribution. The numerical results for two model problems are presented: a conducting sphere in a uniform magnetic field and an eddy current probe inspection of a conducting plate with a volumetric defect.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The Complete Dirichlet-to-Neumann Map for Differential Forms
    Vladimir Sharafutdinov
    Clayton Shonkwiler
    Journal of Geometric Analysis, 2013, 23 : 2063 - 2080
  • [22] Stability of spectral partitions and the Dirichlet-to-Neumann map
    G. Berkolaiko
    Y. Canzani
    G. Cox
    J. L. Marzuola
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [23] Stability of spectral partitions and the Dirichlet-to-Neumann map
    Berkolaiko, G.
    Canzani, Y.
    Cox, G.
    Marzuola, J. L.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [24] The Complete Dirichlet-to-Neumann Map for Differential Forms
    Sharafutdinov, Vladimir
    Shonkwiler, Clayton
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) : 2063 - 2080
  • [25] Dirichlet-to-Neumann Map for a Nonlinear Diffusion Equation
    Barone, Vincenzo
    De Lillo, Silvana
    Lupo, Gaia
    Polimeno, Antonino
    STUDIES IN APPLIED MATHEMATICS, 2011, 126 (02) : 145 - 155
  • [26] Efficient Near-Field Analysis of the Electromagnetic Scattering Based on the Dirichlet-to-Neumann Map
    Perrotta, Antea M.
    Maffucci, Antonio
    Ventre, Salvatore
    Tamburrino, Antonello
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [27] The Dirichlet-to-Neumann operator for divergence form problems
    ter Elst, A. F. M.
    Gordon, G.
    Waurick, M.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 177 - 203
  • [28] The Dirichlet-to-Neumann operator for divergence form problems
    A. F. M. ter Elst
    G. Gordon
    M. Waurick
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 177 - 203
  • [29] THE INVERSE PROBLEM FOR THE DIRICHLET-TO-NEUMANN MAP ON LORENTZIAN MANIFOLDS
    Stefanov, Plamen
    Yang, Yang
    ANALYSIS & PDE, 2018, 11 (06): : 1381 - 1414
  • [30] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Gregory Berkolaiko
    Graham Cox
    Jeremy L. Marzuola
    Letters in Mathematical Physics, 2019, 109 : 1611 - 1623