A Chebyshev spectral method for the solution of nonlinear optimal control problems

被引:8
|
作者
Elnagar, GN
Razzaghi, M
机构
[1] MISSISSIPPI STATE UNIV,DEPT MATH & STAT,MISSISSIPPI STATE,MS 39762
[2] UNIV S CAROLINA,DEPT MATH,SPARTANBURG,SC
[3] AMIRKABIR UNIV,DEPT MATH,TEHRAN,IRAN
关键词
Chebyshev; spectral method; nonlinear problems;
D O I
10.1016/S0307-904X(97)00013-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a spectral method of solving the controlled Duffing oscillator. The method is based upon constructing the Mth degree interpolation polynomials, using Chebyshevs nodes, to approximate the state and the control vectors. The differential and integral expressions that arise from the system dynamics and the performance index are converted into some algebraic equations. The optimum condition is obtained by applying the method of constrained extremum. (C) 1997 by Elsevier Science Inc.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [41] A Legendre Galerkin spectral method for optimal control problems
    Chen, Yanping
    Xia, Nianshi
    Yi, Nianyu
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (04) : 663 - 671
  • [42] A Legendre Galerkin spectral method for optimal control problems
    Yanping Chen
    Nianshi Xia
    Nianyu Yi
    Journal of Systems Science and Complexity, 2011, 24 : 663 - 671
  • [43] Spectral homotopy analysis method and its convergence for solving a class of nonlinear optimal control problems
    Nik, H. Saberi
    Effati, S.
    Motsa, S. S.
    Shirazian, M.
    NUMERICAL ALGORITHMS, 2014, 65 (01) : 171 - 194
  • [44] Spectral homotopy analysis method and its convergence for solving a class of nonlinear optimal control problems
    H. Saberi Nik
    S. Effati
    S. S. Motsa
    M. Shirazian
    Numerical Algorithms, 2014, 65 : 171 - 194
  • [45] Method of Implicit Functions in the Solution of Multiparameter Nonlinear Spectral Problems
    Savenko P.O.
    Journal of Mathematical Sciences, 2023, 272 (1) : 38 - 54
  • [46] Uncertain Method for Optimal Control Problems With Uncertainties Using Chebyshev Inclusion Functions
    Razmjooy, Navid
    Ramezani, Mehdi
    ASIAN JOURNAL OF CONTROL, 2019, 21 (02) : 824 - 831
  • [47] Numerical solution of optimal control problems by using a new second kind Chebyshev wavelet
    Ramezani, Mehdi
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2016, 4 (02): : 162 - 169
  • [48] A Chebyshev pseudospectral method for solving fractional-order optimal control problems
    Dabiri, Arman
    Karimi, Laya
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 4917 - 4922
  • [49] Chebyshev Finite Difference Method for Solving Constrained Quadratic Optimal Control Problems
    Maleki, M.
    Tirani, M. Dadkhah
    JOURNAL OF MATHEMATICAL EXTENSION, 2011, 5 (02) : 1 - 21
  • [50] Numerical Solution of Optimal Control Problems of Nonlinear Dynamical Systems
    Rahimov, A. B.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2012, 44 (11) : 55 - 69