Local 2-Geodesic Transitivity of Graphs

被引:1
|
作者
Devillers, Alice [1 ]
Jin, Wei [2 ]
Li, Cai Heng [1 ]
Seress, Akos [3 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
[2] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
澳大利亚研究理事会;
关键词
graphs; geodesics; transitivity;
D O I
10.1007/s00026-014-0224-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An s-geodesic in a graph I" is a path connecting two vertices at distance s. Being locally transitive on s-geodesics is not a monotone property: if an automorphism group G of a graph I" is locally transitive on s-geodesics, it does not follow that G is locally transitive on shorter geodesics. In this paper, we characterise all graphs that are locally transitive on 2-geodesics, but not locally transitive on 1-geodesics.
引用
收藏
页码:313 / 325
页数:13
相关论文
共 50 条
  • [1] Local 2-Geodesic Transitivity of Graphs
    Alice Devillers
    Wei Jin
    Cai Heng Li
    Ákos Seress
    [J]. Annals of Combinatorics, 2014, 18 : 313 - 325
  • [2] Local 2-geodesic transitivity and clique graphs
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Praeger, Cheryl E.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) : 500 - 508
  • [3] On normal 2-geodesic transitive Cayley graphs
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Praeger, Cheryl E.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 39 (04) : 903 - 918
  • [4] On normal 2-geodesic transitive Cayley graphs
    Alice Devillers
    Wei Jin
    Cai Heng Li
    Cheryl E. Praeger
    [J]. Journal of Algebraic Combinatorics, 2014, 39 : 903 - 918
  • [5] Finite 2-Geodesic Transitive Abelian Cayley Graphs
    Wei Jin
    Wei Jun Liu
    Chang Qun Wang
    [J]. Graphs and Combinatorics, 2016, 32 : 713 - 720
  • [6] Finite 2-Geodesic Transitive Graphs of Prime Valency
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Praeger, Cheryl E.
    [J]. JOURNAL OF GRAPH THEORY, 2015, 80 (01) : 18 - 27
  • [7] Finite 2-Geodesic Transitive Abelian Cayley Graphs
    Jin, Wei
    Liu, Wei Jun
    Wang, Chang Qun
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (02) : 713 - 720
  • [8] FINITE NORMAL 2-GEODESIC TRANSITIVE CAYLEY GRAPHS
    Jin, Wei
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 100 (03) : 338 - 348
  • [9] Line graphs and geodesic transitivity
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Praeger, Cheryl E.
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2013, 6 (01) : 13 - 20
  • [10] FINITE 2-GEODESIC TRANSITIVE GRAPHS OF VALENCY 3p
    Jin, Wei
    [J]. ARS COMBINATORIA, 2015, 120 : 417 - 425