FINITE 2-GEODESIC TRANSITIVE GRAPHS OF VALENCY 3p

被引:0
|
作者
Jin, Wei [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Res Ctr Appl Stat, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
关键词
PERMUTATION-GROUPS; CAYLEY-GRAPHS; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a non-complete graph Gamma, a vertex triple (u, v, w) with v adjacent to both u and w is called a 2-geodesic if u w and u not equal w are not adjacent. Then Gamma is said to be 2-geodesic transitive if its automorphism group is transitive on both arcs and 2-geodesics. In this paper, we classify the family of connected 2-geodesic transitive graphs of valency 3p where p is an odd prime.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 50 条
  • [1] Finite 2-Geodesic Transitive Graphs of Prime Valency
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Praeger, Cheryl E.
    [J]. JOURNAL OF GRAPH THEORY, 2015, 80 (01) : 18 - 27
  • [2] Finite 2-Geodesic Transitive Abelian Cayley Graphs
    Wei Jin
    Wei Jun Liu
    Chang Qun Wang
    [J]. Graphs and Combinatorics, 2016, 32 : 713 - 720
  • [3] Finite 2-Geodesic Transitive Abelian Cayley Graphs
    Jin, Wei
    Liu, Wei Jun
    Wang, Chang Qun
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (02) : 713 - 720
  • [4] FINITE NORMAL 2-GEODESIC TRANSITIVE CAYLEY GRAPHS
    Jin, Wei
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 100 (03) : 338 - 348
  • [5] FINITE 2-GEODESIC-TRANSITIVE GRAPHS OF VALENCY 9
    Jin, Wei
    [J]. UTILITAS MATHEMATICA, 2015, 98 : 271 - 281
  • [6] On normal 2-geodesic transitive Cayley graphs
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Praeger, Cheryl E.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 39 (04) : 903 - 918
  • [7] On normal 2-geodesic transitive Cayley graphs
    Alice Devillers
    Wei Jin
    Cai Heng Li
    Cheryl E. Praeger
    [J]. Journal of Algebraic Combinatorics, 2014, 39 : 903 - 918
  • [8] Finite 2-geodesic-transitive graphs of valency twice a prime
    Jin, Wei
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 49 : 117 - 125
  • [9] Two-geodesic transitive graphs of valency six
    Jin, Wei
    Liu, Wei Jun
    Xu, Shang Jin
    [J]. DISCRETE MATHEMATICS, 2017, 340 (02) : 192 - 200
  • [10] FINITE 3-GEODESIC TRANSITIVE BUT NOT 3-ARC TRANSITIVE GRAPHS
    Jin, Wei
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (02) : 183 - 190