On normal 2-geodesic transitive Cayley graphs

被引:26
|
作者
Devillers, Alice [1 ]
Jin, Wei [1 ,2 ]
Li, Cai Heng [1 ]
Praeger, Cheryl E. [1 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
[2] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
基金
澳大利亚研究理事会;
关键词
Cayley graph; Normal 2-geodesic transitivity;
D O I
10.1007/s10801-013-0472-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate connected normal 2-geodesic transitive Cayley graphs Cay(T,S). We first prove that if Cay(T,S) is neither cyclic nor K-4[2], then aOE (c) a > a-{1}aS dagger I center dot S for all aaS. Next, as an application, we give a reduction theorem proving that each graph in this family which is neither a complete multipartite graph nor a bipartite 2-arc transitive graph, has a normal quotient that is either a complete graph or a Cayley graph in the family for a characteristically simple group. Finally we classify complete multipartite graphs in the family.
引用
收藏
页码:903 / 918
页数:16
相关论文
共 50 条
  • [1] On normal 2-geodesic transitive Cayley graphs
    Alice Devillers
    Wei Jin
    Cai Heng Li
    Cheryl E. Praeger
    [J]. Journal of Algebraic Combinatorics, 2014, 39 : 903 - 918
  • [2] FINITE NORMAL 2-GEODESIC TRANSITIVE CAYLEY GRAPHS
    Jin, Wei
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 100 (03) : 338 - 348
  • [3] Finite 2-Geodesic Transitive Abelian Cayley Graphs
    Wei Jin
    Wei Jun Liu
    Chang Qun Wang
    [J]. Graphs and Combinatorics, 2016, 32 : 713 - 720
  • [4] Finite 2-Geodesic Transitive Abelian Cayley Graphs
    Jin, Wei
    Liu, Wei Jun
    Wang, Chang Qun
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (02) : 713 - 720
  • [5] Finite 2-Geodesic Transitive Graphs of Prime Valency
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Praeger, Cheryl E.
    [J]. JOURNAL OF GRAPH THEORY, 2015, 80 (01) : 18 - 27
  • [6] FINITE 2-GEODESIC TRANSITIVE GRAPHS OF VALENCY 3p
    Jin, Wei
    [J]. ARS COMBINATORIA, 2015, 120 : 417 - 425
  • [7] FINITE 2-GEODESIC-TRANSITIVE CAYLEY GRAPHS OF DIHEDRAL GROUPS
    Jin, Wei
    Ma, Jicheng
    [J]. ARS COMBINATORIA, 2018, 137 : 403 - 417
  • [8] Local 2-Geodesic Transitivity of Graphs
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Seress, Akos
    [J]. ANNALS OF COMBINATORICS, 2014, 18 (02) : 313 - 325
  • [9] Local 2-Geodesic Transitivity of Graphs
    Alice Devillers
    Wei Jin
    Cai Heng Li
    Ákos Seress
    [J]. Annals of Combinatorics, 2014, 18 : 313 - 325
  • [10] Local 2-geodesic transitivity and clique graphs
    Devillers, Alice
    Jin, Wei
    Li, Cai Heng
    Praeger, Cheryl E.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) : 500 - 508