Positive solutions to nonlinear inclusion problems in Orlicz-Sobolev spaces

被引:5
|
作者
Dong, Ge [1 ]
Fang, Xiaochun [2 ]
机构
[1] Shanghai Univ Med & Hlth Sci, Dept Arts & Sci Teaching, Shanghai, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Jen-Chih Yao; Orlicz-Sobolev spaces; nonlinear elliptic inclusion; multivalued operator; subsolution-supersolution; positive solutions; PARTIAL-DIFFERENTIAL SYSTEMS; EXISTENCE THEOREM; WEAK SOLUTIONS; INEQUALITIES; EQUATIONS; OPERATORS;
D O I
10.1080/00036811.2019.1645327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive solutions to a nonlinear elliptic inclusion problem driven by an elliptic differential operator with Dirichlet boundary and a multivalued term depending on the solution and its gradient in reflexive Orlicz-Sobolev spaces by using a linear functional analysis method and a subsolution-supersolution method. We provide some sufficient conditions to ensure that a subsolution and a supersolution exist. An existence theorem for positive solutions of the problem is established.
引用
收藏
页码:1440 / 1453
页数:14
相关论文
共 50 条
  • [21] Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 305 - 318
  • [22] Nonhomogeneous boundary value problems in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (01) : 15 - 20
  • [23] INHOMOGENEOUS ORLICZ-SOBOLEV SPACES AND NONLINEAR PARABOLIC INITIAL VALUE-PROBLEMS
    DONALDSON, T
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 16 (02) : 201 - 256
  • [24] Solvability of Strongly Nonlinear Obstacle Parabolic Problems in Inhomogeneous Orlicz-Sobolev Spaces
    Bourahma, Mohamed
    Bennouna, Jaouad
    El Haji, Badr
    Benkirane, Abdelmoujib
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (04) : 463 - 487
  • [25] On the Minimal Solutions of Variational Inequalities in Orlicz-Sobolev Spaces
    Dong, Ge
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (03) : 333 - 356
  • [26] Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) : 263 - 268
  • [27] EXISTENCE OF WEAK SOLUTIONS FOR OBSTACLE PROBLEMS WITH VARIABLE GROWTH IN ORLICZ-SOBOLEV SPACES
    Mouad Allalou
    Said Ait Temghart
    Abderahmane Raji
    Journal of Mathematical Sciences, 2025, 289 (2) : 155 - 167
  • [28] An existence result of entropy solutions to elliptic problems in generalized Orlicz-Sobolev spaces
    Bourahma, M.
    Benkirane, A.
    Bennouna, J.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 481 - 504
  • [29] Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Repovs, Dusan
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (14) : 6624 - 6632
  • [30] A STRONGLY NONLINEAR ELLIPTIC PROBLEM IN ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 455 - 462