Tracking Recurring Patterns in Time Series Using Dynamic Time Warping

被引:3
|
作者
van der Vlist, Rik [1 ,2 ]
Taal, Cees [1 ]
Heusdens, Richard [2 ]
机构
[1] Quby BV, Amsterdam, Netherlands
[2] Delft Univ Technol, Delft, Netherlands
来源
2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2019年
关键词
dynamic programming; dynamic time warping; time series analysis; SIGNALS;
D O I
10.23919/eusipco.2019.8903102
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dynamic time warping (DTW) is a distance measure to compare time series that exhibit similar patterns. In this paper, we will show how the warping path of the DTW algorithm can be interpreted, and a framework is proposed to extend the DTW algorithm. Using this framework, we will show how the dynamic programming structure of the DTW algorithm can be used to track repeating patterns in time series.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Dynamic Time Warping of Segmented Time Series
    Banko, Zoltan
    Abonyi, Janos
    SOFT COMPUTING IN INDUSTRIAL APPLICATIONS - ALGORITHMS, INTEGRATION, AND SUCCESS STORIES, 2010, 75 : 117 - 125
  • [2] Weighted Dynamic Time Warping for Time Series
    Yang, Guangyu
    Xia, Shuyan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (13):
  • [3] Clone Detection Using Time Series and Dynamic Time Warping Techniques
    Abdelkader, Mostefai
    mimoun, Malki
    PROCEEDINGS OF 2015 THIRD IEEE WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2015,
  • [4] Averaging Methods using Dynamic Time Warping for Time Series Classification
    Datta, Shreyasi
    Karmakar, Chandan K.
    Palaniswami, Marimuthu
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2794 - 2798
  • [5] Comparing and combining time series trajectories using Dynamic Time Warping
    Vaughan, Neil
    Gabrys, Bogdan
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS: PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE KES-2016, 2016, 96 : 474 - 483
  • [6] Embedding of time series data by using Dynamic Time Warping distances
    Graduate School of Information Sciences, Hiroshima City University, Hiroshima, 731-3194, Japan
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    Syst Comput Jpn, 2006, 3 (1-9):
  • [7] Time Series Clustering Based on Dynamic Time Warping
    Wang, Weizeng
    Lyu, Gaofan
    Shi, Yuliang
    Liang, Xun
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 487 - 490
  • [8] Iterative deepening dynamic time warping for time series
    Chu, S
    Keogh, E
    Hart, D
    Pazzani, M
    PROCEEDINGS OF THE SECOND SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2002, : 195 - 212
  • [9] Flexible Dynamic Time Warping for Time Series Classification
    Hsu, Che-Jui
    Huang, Kuo-Si
    Yang, Chang-Biau
    Guo, Yi-Pu
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2838 - 2842
  • [10] Segmentation of Time Series in Improving Dynamic Time Warping
    Ma, Ruizhe
    Ahmadzadeh, Azim
    Boubrahimi, Soukaina Filali
    Angryk, Rafal A.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 3756 - 3761