Segmentation of Time Series in Improving Dynamic Time Warping

被引:0
|
作者
Ma, Ruizhe [1 ]
Ahmadzadeh, Azim [1 ]
Boubrahimi, Soukaina Filali [1 ]
Angryk, Rafal A. [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
关键词
time series; Dynamic Time Warping; feature selection; SIMILARITY MEASURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since its introduction to the computer science community, the Dynamic Time Warping (DTW) algorithm has demonstrated good performance with time series data. While this elastic measure is known for its effectiveness with time series sequence comparisons, the possibility of pathological warping paths weakens the algorithms potential considerably. Techniques centering on pruning off impossible mappings or lowering data dimensions such as windowing, slope weighting, step pattern, and approximation have been proposed over the years to reduce the possibility of pathological warping paths with Dynamic Time Warping. However, because the current DTW improvement techniques are mostly global methods, they are either limited in effect or limit the warping path excessively. We believe segmenting time series at significant feature points will alleviate some of the pathological warpings, and at the same time allowing us to obtain more intuitive warpings. Our heuristic approaches the problem from the human perspective of sequence comparison: by identifying global similarity before local similarities. We use easily identifiable peaks as the significant feature. The final distance is the DTW distance sum of all segments of time series. In this paper, we explore the impact of different peak identification parameters on Dynamic Time Warping and demonstrate how segmentation can help to avoid pathological warpings.
引用
收藏
页码:3756 / 3761
页数:6
相关论文
共 50 条
  • [1] Dynamic Time Warping of Segmented Time Series
    Banko, Zoltan
    Abonyi, Janos
    [J]. SOFT COMPUTING IN INDUSTRIAL APPLICATIONS - ALGORITHMS, INTEGRATION, AND SUCCESS STORIES, 2010, 75 : 117 - 125
  • [2] Weighted Dynamic Time Warping for Time Series
    Yang, Guangyu
    Xia, Shuyan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (13):
  • [3] Time Series Clustering Based on Dynamic Time Warping
    Wang, Weizeng
    Lyu, Gaofan
    Shi, Yuliang
    Liang, Xun
    [J]. PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 487 - 490
  • [4] Iterative deepening dynamic time warping for time series
    Chu, S
    Keogh, E
    Hart, D
    Pazzani, M
    [J]. PROCEEDINGS OF THE SECOND SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2002, : 195 - 212
  • [5] Flexible Dynamic Time Warping for Time Series Classification
    Hsu, Che-Jui
    Huang, Kuo-Si
    Yang, Chang-Biau
    Guo, Yi-Pu
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2838 - 2842
  • [6] Weighted dynamic time warping for time series classification
    Jeong, Young-Seon
    Jeong, Myong K.
    Omitaomu, Olufemi A.
    [J]. PATTERN RECOGNITION, 2011, 44 (09) : 2231 - 2240
  • [7] Automated ECG segmentation with dynamic time warping
    Vullings, HJLM
    Verhaegen, MHG
    Verbruggen, HB
    [J]. PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6: BIOMEDICAL ENGINEERING TOWARDS THE YEAR 2000 AND BEYOND, 1998, 20 : 163 - 166
  • [8] Clustering time series with Granular Dynamic Time Warping method
    Yu, Fusheng
    Dong, Keqiang
    Chen, Fei
    Jiang, Yongke
    Zeng, Wenyi
    [J]. GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 393 - +
  • [9] Enhanced Weighted Dynamic Time Warping for Time Series Classification
    Anantasech, Pichamon
    Ratanamahatana, Chotirat Ann
    [J]. THIRD INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, 797 : 655 - 664
  • [10] On-Line Dynamic Time Warping for Streaming Time Series
    Oregi, Izaskun
    Perez, Aritz
    Del Ser, Javier
    Lozano, Jose A.
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 591 - 605