Tracking Recurring Patterns in Time Series Using Dynamic Time Warping

被引:3
|
作者
van der Vlist, Rik [1 ,2 ]
Taal, Cees [1 ]
Heusdens, Richard [2 ]
机构
[1] Quby BV, Amsterdam, Netherlands
[2] Delft Univ Technol, Delft, Netherlands
关键词
dynamic programming; dynamic time warping; time series analysis; SIGNALS;
D O I
10.23919/eusipco.2019.8903102
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dynamic time warping (DTW) is a distance measure to compare time series that exhibit similar patterns. In this paper, we will show how the warping path of the DTW algorithm can be interpreted, and a framework is proposed to extend the DTW algorithm. Using this framework, we will show how the dynamic programming structure of the DTW algorithm can be used to track repeating patterns in time series.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] On-Line Dynamic Time Warping for Streaming Time Series
    Oregi, Izaskun
    Perez, Aritz
    Del Ser, Javier
    Lozano, Jose A.
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 591 - 605
  • [22] Enhanced Weighted Dynamic Time Warping for Time Series Classification
    Anantasech, Pichamon
    Ratanamahatana, Chotirat Ann
    [J]. THIRD INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, 797 : 655 - 664
  • [23] Speed up dynamic time warping of multivariate time series
    Li, Zhengxin
    Zhang, Fengming
    Nie, Feiping
    Li, Hailin
    Wang, Jian
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (03) : 2593 - 2603
  • [24] A Scalable Segmented Dynamic Time Warping for Time Series Classification
    Ma, Ruizhe
    Ahmadzadeh, Azim
    Boubrahimi, Soukaina Filali
    Angryk, Rafal A.
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2019, PT II, 2019, 11509 : 407 - 419
  • [25] Correlation based dynamic time warping of multivariate time series
    Banko, Zoltan
    Abonyi, Janos
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (17) : 12814 - 12823
  • [26] Dynamic Time Warping for Music Retrieval Using Time Series Modeling of Musical Emotions
    Deng, James J.
    Leung, Clement H. C.
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2015, 6 (02) : 137 - 151
  • [27] Inaccuracies of shape averaging method using dynamic time warping for time series data
    Niennattrakul, Vit
    Ratanamahatana, Chotirat Ann
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 513 - +
  • [28] Time series clustering based on shape dynamic time warping using cloud models
    Weng, YJ
    Zhu, ZY
    [J]. 2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 236 - 241
  • [29] ONLINE MUSIC PERFORMANCE TRACKING USING PARALLEL DYNAMIC TIME WARPING
    Wei, I-Chieh
    Su, Li
    [J]. 2018 IEEE 20TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2018,
  • [30] Automatic seismic event tracking using a dynamic time warping algorithm
    Jin, Song
    Chen, ShuangQuan
    Wei, Jianxin
    Li, Xiang-Yang
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2017, 14 (05) : 1138 - 1149