A mixed integer linear formulation for the minimum label spanning tree problem

被引:17
|
作者
Captivo, M. Eugenia [1 ]
Climaco, Joao C. N. [2 ,3 ]
Pascoal, Marta M. B. [2 ,4 ]
机构
[1] Univ Lisbon, Fac Ciencias, Ctr Invest Operac, P-1749016 Lisbon, Portugal
[2] Inst Engn Sistemas & Comp Coimbra, P-3000033 Coimbra, Portugal
[3] Univ Coimbra, Fac Econ, P-3004512 Coimbra, Portugal
[4] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
关键词
Spanning tree; Label; Color; Mixed integer formulation;
D O I
10.1016/j.cor.2009.02.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we deal with the minimum label spanning tree problem. This is a relevant problem with applications such as telecommunication networks or electric networks, where each edge is assigned with a label (such as a color) and it is intended to determine a spanning tree with the minimum number of different labels. We introduce some mixed integer formulations for this problem and prove that one of their relaxations always gives the optimal value. Finally we present and discuss the results of computational experiments. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3082 / 3085
页数:4
相关论文
共 50 条
  • [41] RAMP for the capacitated minimum spanning tree problem
    Rego, Cesar
    Mathew, Frank
    Glover, Fred
    [J]. ANNALS OF OPERATIONS RESEARCH, 2010, 181 (01) : 661 - 681
  • [42] A Minimum Spanning Tree Problem in Uncertain Networks
    He, FangGuo
    Shao, GuiMing
    [J]. ADVANCES IN MULTIMEDIA, SOFTWARE ENGINEERING AND COMPUTING, VOL 1, 2011, 128 : 677 - 683
  • [43] The minimum spanning tree problem with fuzzy costs
    Janiak, Adam
    Kasperski, Adam
    [J]. FUZZY OPTIMIZATION AND DECISION MAKING, 2008, 7 (02) : 105 - 118
  • [44] Fully Retroactive Minimum Spanning Tree Problem
    de Andrade Junior, Jose Wagner
    Seabra, Rodrigo Duarte
    [J]. COMPUTER JOURNAL, 2022, 65 (04): : 973 - 982
  • [45] Solving the Quadratic Minimum Spanning Tree Problem
    Cordone, Roberto
    Passeri, Gianluca
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11597 - 11612
  • [46] The Budgeted Labeled Minimum Spanning Tree Problem
    Cerulli, Raffaele
    D'Ambrosio, Ciriaco
    Serra, Domenico
    Sorgente, Carmine
    [J]. MATHEMATICS, 2024, 12 (02)
  • [47] Fuzzy quadratic minimum spanning tree problem
    Gao, JW
    Lu, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (03) : 773 - 788
  • [48] The minimum spanning tree problem with fuzzy costs
    Adam Janiak
    Adam Kasperski
    [J]. Fuzzy Optimization and Decision Making, 2008, 7 : 105 - 118
  • [49] Minimum Spanning Tree Cycle Intersection problem
    Dubinsky, Manuel
    Massri, Cesar
    Taubin, Gabriel
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 294 : 152 - 166
  • [50] The minimum-area spanning tree problem
    Carmi, P
    Katz, MJ
    Mitchell, JSB
    [J]. ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2005, 3608 : 195 - 204