Fully Retroactive Minimum Spanning Tree Problem

被引:1
|
作者
de Andrade Junior, Jose Wagner [1 ]
Seabra, Rodrigo Duarte [2 ]
机构
[1] Univ Fed Itajuba, Inst Engn Syst & Informat Technol, Itajuba, MG, Brazil
[2] Univ Fed Itajuba, Inst Math & Comp, Itajuba, MG, Brazil
来源
COMPUTER JOURNAL | 2022年 / 65卷 / 04期
关键词
minimum spanning tree; retroactivity; data structures; dynamic graphs; ALGORITHMS;
D O I
10.1093/comjnl/bxaa135
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article describes an algorithm that solves a fully dynamic variant of the minimum spanning tree (MST) problem. The fully retroactive MST allows adding an edge to time , or to obtain the current MST at time . By using the square root technique and a data structure link-cut tree, it was possible to obtain an algorithm that runs each query in amortized, in which is the number of nodes in graph and is the size of the timeline. We use a different approach to solve the MST problem instead of the standard algorithms, such as Prim or Kruskal, and this allows using the square root technique to improve the final complexity of the algorithm. Our empirical analysis shows that the proposed algorithm runs faster than re-executing the standard algorithms, and this difference only increases when the number of nodes in these graphs is larger.
引用
收藏
页码:973 / 982
页数:10
相关论文
共 50 条
  • [1] Fully Retroactive Minimum Spanning Tree Problem
    De Andrade Júnior, JosCrossed D Sign© Wagner
    Duarte Seabra, Rodrigo
    Computer Journal, 2022, 65 (04): : 973 - 982
  • [2] On the minimum label spanning tree problem
    Krumke, SO
    Wirth, HC
    INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 81 - 85
  • [3] ON THE GENERALIZED MINIMUM SPANNING TREE PROBLEM
    MYUNG, YS
    LEE, CH
    TCHA, DW
    NETWORKS, 1995, 26 (04) : 231 - 241
  • [4] A constrained minimum spanning tree problem
    Chen, GT
    Zhang, GC
    COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (09) : 867 - 875
  • [5] ON THE HISTORY OF THE MINIMUM SPANNING TREE PROBLEM
    GRAHAM, RL
    HELL, P
    ANNALS OF THE HISTORY OF COMPUTING, 1985, 7 (01): : 43 - 57
  • [6] The minimum risk spanning tree problem
    Chen, Xujin
    Hu, Jie
    Hu, Xiaodong
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2007, 4616 : 81 - +
  • [7] The Distributed Minimum Spanning Tree Problem
    Schmid, Stefan
    Pandurangan, Gopal
    Robinson, Peter
    Scquizzato, Michele
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2018, (125): : 51 - 80
  • [8] The Minimum Moving Spanning Tree Problem
    Akitaya H.A.
    Biniaz A.
    Bose P.
    De Carufel J.-L.
    Maheshwari A.
    da Silveira L.F.S.X.
    Smid M.
    Journal of Graph Algorithms and Applications, 2023, 27 (01) : 1 - 18
  • [9] THE PROBABILISTIC MINIMUM SPANNING TREE PROBLEM
    BERTSIMAS, DJ
    NETWORKS, 1990, 20 (03) : 245 - 275
  • [10] THE QUADRATIC MINIMUM SPANNING TREE PROBLEM
    ASSAD, A
    XU, WX
    NAVAL RESEARCH LOGISTICS, 1992, 39 (03) : 399 - 417