A mixed integer linear formulation for the minimum label spanning tree problem

被引:17
|
作者
Captivo, M. Eugenia [1 ]
Climaco, Joao C. N. [2 ,3 ]
Pascoal, Marta M. B. [2 ,4 ]
机构
[1] Univ Lisbon, Fac Ciencias, Ctr Invest Operac, P-1749016 Lisbon, Portugal
[2] Inst Engn Sistemas & Comp Coimbra, P-3000033 Coimbra, Portugal
[3] Univ Coimbra, Fac Econ, P-3004512 Coimbra, Portugal
[4] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
关键词
Spanning tree; Label; Color; Mixed integer formulation;
D O I
10.1016/j.cor.2009.02.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we deal with the minimum label spanning tree problem. This is a relevant problem with applications such as telecommunication networks or electric networks, where each edge is assigned with a label (such as a color) and it is intended to determine a spanning tree with the minimum number of different labels. We introduce some mixed integer formulations for this problem and prove that one of their relaxations always gives the optimal value. Finally we present and discuss the results of computational experiments. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3082 / 3085
页数:4
相关论文
共 50 条
  • [1] An Efficient Mixed Integer Linear Programming Model for the Minimum Spanning Tree Problem
    Abdelmaguid, Tamer F.
    [J]. MATHEMATICS, 2018, 6 (10)
  • [2] On the minimum label spanning tree problem
    Krumke, SO
    Wirth, HC
    [J]. INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 81 - 85
  • [3] Minimum Spanning Tree Problem with Label Selection
    Fujiyoshi, Akio
    Suzuki, Masakazu
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (02) : 233 - 239
  • [4] Improved heuristics for the minimum label spanning tree problem
    Xiong, Yapei
    Golden, Bruce
    Wasil, Edward
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) : 700 - 703
  • [5] The label-constrained minimum spanning tree problem
    Xiong, Yupei
    Golden, Bruce
    Wasil, Edward
    Chen, Si
    [J]. TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY, 2008, : 39 - +
  • [6] A Multigraph Formulation for the Generalized Minimum Spanning Tree Problem
    de Sousa, Ernando Gomes
    de Andrade, Rafael Castro
    Santos, Andrea Cynthia
    [J]. COMBINATORIAL OPTIMIZATION, ISCO 2018, 2018, 10856 : 133 - 143
  • [7] Combining variable neighborhood search with integer linear programming for the generalized minimum spanning tree problem
    Bin Hu
    Markus Leitner
    Günther R. Raidl
    [J]. Journal of Heuristics, 2008, 14 : 473 - 499
  • [8] Combining variable neighborhood search with integer linear programming for the generalized minimum spanning tree problem
    Hu, Bin
    Leitner, Markus
    Raidl, Guenther R.
    [J]. JOURNAL OF HEURISTICS, 2008, 14 (05) : 473 - 499
  • [9] Heuristics for the strong generalized minimum label spanning tree problem
    Cerrone, Carmine
    D'Ambrosio, Ciriaco
    Raiconi, Andrea
    [J]. NETWORKS, 2019, 74 (02) : 148 - 160
  • [10] Compact mixed integer linear programming models to the minimum weighted tree reconstruction problem
    Fortz, Bernard
    Oliveira, Olga
    Requejo, Cristina
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 256 (01) : 242 - 251