The label-constrained minimum spanning tree problem

被引:0
|
作者
Xiong, Yupei [1 ]
Golden, Bruce [1 ]
Wasil, Edward [1 ]
Chen, Si [1 ]
机构
[1] Sysmind LLC, 38 Washington Rd,Princeton Junct, Princeton, NJ 08550 USA
关键词
local search; genetic algorithm; NP-complete; spanning trees; mixed integer programming;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a positive integer K and a connected, undirected graph G whose edges are labeled (or colored) and have weights, the label-constrained minimum spanning tree (LCMST) problem seeks a minimum weight spanning tree with at most K distinct labels (or colors). In this paper, we prove that the LCMST problem is NP-complete. Next, we introduce two local search methods to solve the problem. Then, we present a genetic algorithm which gets comparable results, but is much faster. In addition, we present two mixed integer programming formulations for the LCMST problem. We compare these on some small problem instances. Finally, we introduce a dual problem.
引用
收藏
页码:39 / +
页数:4
相关论文
共 50 条
  • [1] Variable neighborhood search for the cost constrained minimum label spanning tree and label constrained minimum spanning tree problems
    Naji-Azimi, Zahra
    Salari, Majid
    Golden, Bruce
    Raghavan, S.
    Toth, Paolo
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2010, 37 (11) : 1952 - 1964
  • [2] A constrained minimum spanning tree problem
    Chen, GT
    Zhang, GC
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (09) : 867 - 875
  • [3] On the minimum label spanning tree problem
    Krumke, SO
    Wirth, HC
    [J]. INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 81 - 85
  • [4] Minimum Spanning Tree Problem with Label Selection
    Fujiyoshi, Akio
    Suzuki, Masakazu
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (02) : 233 - 239
  • [5] The delay-constrained minimum spanning tree problem
    Salama, HF
    Reeves, DS
    Viniotis, Y
    [J]. SECOND IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 1997, : 699 - 703
  • [6] Diameter Constrained Fuzzy Minimum Spanning Tree Problem
    Abu Nayeem, Sk. Md.
    Pal, Madhumangal
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2013, 6 (06) : 1040 - 1051
  • [7] The subdivision-constrained minimum spanning tree problem
    Li, Jianping
    Li, Weidong
    Zhang, Tongquan
    Zhang, Zhongxu
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 877 - 885
  • [8] On the Weight-Constrained Minimum Spanning Tree Problem
    Agra, Agostinho
    Cerveira, Adelaide
    Requejo, Cristina
    Santos, Eulalia
    [J]. NETWORK OPTIMIZATION, 2011, 6701 : 156 - 161
  • [9] Diameter Constrained Fuzzy Minimum Spanning Tree Problem
    Sk. Md. Abu Nayeem
    Madhumangal Pal
    [J]. International Journal of Computational Intelligence Systems, 2013, 6 : 1040 - 1051
  • [10] Improved heuristics for the minimum label spanning tree problem
    Xiong, Yapei
    Golden, Bruce
    Wasil, Edward
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) : 700 - 703