Dynamic Replica Selection Using Improved Kernel Density Estimation

被引:1
|
作者
Pang, Yin [1 ,2 ]
Li, Kan [2 ]
Sun, Xin [2 ]
Bu, Kaili [3 ]
机构
[1] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing Key Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[3] Beijing Aerosp Control Ctr, Beijing 100094, Peoples R China
关键词
replica selection; improved KDE; temporal locality; geographic locality;
D O I
10.1109/IITSI.2010.49
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Replication service in Distributed Systems can reduce access latency and bandwidth consumption. When different nodes hold replicas accessed, there will be a significant benefit by selecting the best replica. Most of the existed replication strategies deal with the prediction of the response time. However, these strategies do not take fully into account the network dynamic and access locality. To solve this problem, a dynamic replica selection strategy using improved Kernel Density Estimation (KDE) is presented. Firstly, it distinguishes old replicas from new ones. Then, it predicts the network load and available bandwidth to choose the best replica. The improved KDE can select accurately the best accessed replica with only a little history data, which is very useful in a dynamic network. Simulation results demonstrate the efficiency and effectiveness of improved KDE in comparison with other approaches.
引用
收藏
页码:470 / 474
页数:5
相关论文
共 50 条
  • [41] A Bayesian procedure for bandwidth selection in circular kernel density estimation
    Bedouhene, Kahina
    Zougab, Nabil
    MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (01): : 69 - 82
  • [42] Modified Fast Algorithm for the Bandwidth Selection of the Kernel Density Estimation
    Lapko, A., V
    Lapko, V. A.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2020, 56 (06) : 566 - 572
  • [43] An improved Kernel density estimation approach for moving objects detection
    Li, Bo
    Li, Yuhong
    Zhou, Han
    Open Automation and Control Systems Journal, 2014, 6 (01): : 768 - 781
  • [44] An Improved Kernel Density Estimation Method for Characterizing Buoy Offset
    Zhou, Shibo
    Peng, Bingbing
    Shao, Jinxing
    Ren, Luzhen
    IEEE ACCESS, 2024, 12 : 114495 - 114511
  • [45] Improved fast Gauss transform and efficient kernel density estimation
    Yang, CJ
    Duraiswami, R
    Gumerov, NA
    Davis, L
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 464 - 471
  • [46] Unsupervised Discretization Using Kernel Density Estimation
    Biba, Marenglen
    Esposito, Floriana
    Ferilli, Stefano
    di Mauro, Nicola
    Basile, Teresa M. A.
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 696 - 701
  • [47] Unimodal density estimation using kernel methods
    Hall, P
    Huang, LS
    STATISTICA SINICA, 2002, 12 (04) : 965 - 990
  • [48] Density estimation using kernel method with distorter
    Tanaka, H
    Miyoshi, T
    Ichihashi, H
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1224 - 1229
  • [49] Kernel density estimation using weighted data
    Guillamon, A
    Navarro, J
    Ruiz, JM
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (09) : 2123 - 2135
  • [50] A Fair Classifier Using Kernel Density Estimation
    Cho, Jaewoong
    Hwang, Gyeongjo
    Suh, Changho
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33