Dynamic Replica Selection Using Improved Kernel Density Estimation

被引:1
|
作者
Pang, Yin [1 ,2 ]
Li, Kan [2 ]
Sun, Xin [2 ]
Bu, Kaili [3 ]
机构
[1] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing Key Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[3] Beijing Aerosp Control Ctr, Beijing 100094, Peoples R China
关键词
replica selection; improved KDE; temporal locality; geographic locality;
D O I
10.1109/IITSI.2010.49
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Replication service in Distributed Systems can reduce access latency and bandwidth consumption. When different nodes hold replicas accessed, there will be a significant benefit by selecting the best replica. Most of the existed replication strategies deal with the prediction of the response time. However, these strategies do not take fully into account the network dynamic and access locality. To solve this problem, a dynamic replica selection strategy using improved Kernel Density Estimation (KDE) is presented. Firstly, it distinguishes old replicas from new ones. Then, it predicts the network load and available bandwidth to choose the best replica. The improved KDE can select accurately the best accessed replica with only a little history data, which is very useful in a dynamic network. Simulation results demonstrate the efficiency and effectiveness of improved KDE in comparison with other approaches.
引用
收藏
页码:470 / 474
页数:5
相关论文
共 50 条
  • [21] Bandwidth selection for kernel log-density estimation
    Hazelton, Martin L.
    Cox, Murray P.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 56 - 67
  • [22] A hybrid bandwidth selection methodology for kernel density estimation
    Jiang, Min
    Provost, Serge B.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (03) : 614 - 627
  • [23] Nonparametric localized bandwidth selection for Kernel density estimation
    Cheng, Tingting
    Gao, Jiti
    Zhang, Xibin
    ECONOMETRIC REVIEWS, 2019, 38 (07) : 733 - 762
  • [24] A Comparative Study for Bandwidth Selection in Kernel Density Estimation
    Eidous, Omar M.
    Marie, Mohammad Abd Alrahem Shafeq
    Ebrahem, Mohammed H. Baker Al-Haj
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2010, 9 (01) : 263 - 273
  • [25] Fast optimal bandwidth selection for kernel density estimation
    Raykar, Vikas Chandrakant
    Duraiswami, Ramani
    PROCEEDINGS OF THE SIXTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2006, : 524 - +
  • [26] Using pseudometrics in kernel density estimation
    Hovda, Sigve
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 669 - 696
  • [27] A Simple Approach to Traffic Density Estimation by using Kernel Density Estimation
    Yilan, Mikail
    Ozdemir, Mehmet Kemal
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1865 - 1868
  • [28] An Improved Background and Foreground Modeling Using Kernel Density Estimation in Moving Object Detection
    Yang, Yun
    Liu, Yunyi
    2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 1050 - 1054
  • [29] L-kernel Density Estimation for Bayesian Model Selection
    Briers, Mark
    STATISTICAL DATA SCIENCE, 2018, : 69 - 97
  • [30] An adaptive method for bandwidth selection in circular kernel density estimation
    Stanislav Zámečník
    Ivana Horová
    Stanislav Katina
    Kamila Hasilová
    Computational Statistics, 2024, 39 : 1709 - 1728