Dynamic Replica Selection Using Improved Kernel Density Estimation

被引:1
|
作者
Pang, Yin [1 ,2 ]
Li, Kan [2 ]
Sun, Xin [2 ]
Bu, Kaili [3 ]
机构
[1] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing Key Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[3] Beijing Aerosp Control Ctr, Beijing 100094, Peoples R China
关键词
replica selection; improved KDE; temporal locality; geographic locality;
D O I
10.1109/IITSI.2010.49
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Replication service in Distributed Systems can reduce access latency and bandwidth consumption. When different nodes hold replicas accessed, there will be a significant benefit by selecting the best replica. Most of the existed replication strategies deal with the prediction of the response time. However, these strategies do not take fully into account the network dynamic and access locality. To solve this problem, a dynamic replica selection strategy using improved Kernel Density Estimation (KDE) is presented. Firstly, it distinguishes old replicas from new ones. Then, it predicts the network load and available bandwidth to choose the best replica. The improved KDE can select accurately the best accessed replica with only a little history data, which is very useful in a dynamic network. Simulation results demonstrate the efficiency and effectiveness of improved KDE in comparison with other approaches.
引用
收藏
页码:470 / 474
页数:5
相关论文
共 50 条
  • [1] Improved probe selection for DNA arrays using nonparametric kernel density estimation
    Fu, Qi
    Borneman, James
    Ye, Jingxiao
    Chrobak, Marek
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 902 - 905
  • [2] Optimal Kernel Selection for Density Estimation
    Lerasle, Matthieu
    Magalhaes, Nelo Molter
    Reynaud-Bouret, Patricia
    HIGH DIMENSIONAL PROBABILITY VII: THE CARGESE VOLUME, 2016, 71 : 425 - 460
  • [3] On bandwidth selection in kernel density estimation
    Ushakov, N. G.
    Ushakov, V. G.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 419 - 428
  • [4] An Improved Test for Earnings Management Using Kernel Density Estimation
    Lahr, Henry
    EUROPEAN ACCOUNTING REVIEW, 2014, 23 (04) : 559 - 591
  • [5] An Improved Dynamic Data Replica Selection and Placement in Cloud
    Rajalakshmi, A.
    Vijayakumar, D.
    Srinivasagan, K. G.
    2014 INTERNATIONAL CONFERENCE ON RECENT TRENDS IN INFORMATION TECHNOLOGY (ICRTIT), 2014,
  • [6] Bandwidth selection for kernel density estimation using Fourier domain constraints
    Suhre, Alexander
    Arikan, Orhan
    Cetin, Ahmed Enis
    IET SIGNAL PROCESSING, 2016, 10 (03) : 280 - 283
  • [7] On bandwidth selection using minimal spanning tree for kernel density estimation
    Sreevani
    Murthy, C. A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 102 : 67 - 84
  • [8] Radius selection using kernel density estimation for the computation of nonlinear measures
    Medrano, Johan
    Kheddar, Abderrahmane
    Lesne, Annick
    Ramdani, Sofiane
    CHAOS, 2021, 31 (08)
  • [9] Improved kernel density estimation for clustered data using regularisation and deconvolution
    Chen, Q
    Sandoz, D
    Wynne, RJ
    Kruger, U
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 1410 - 1414
  • [10] Fair Selection through Kernel Density Estimation
    Jiang, Xiangyu
    Dai, Yucong
    Wu, Yongkai
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,