Function Space Optimization: A Symbolic Regression Method for Estimating Parameter Transfer Functions for Hydrological Models

被引:15
|
作者
Feigl, M. [1 ]
Herrnegger, M. [1 ]
Klotz, D. [1 ,2 ,3 ]
Schulz, K. [1 ]
机构
[1] Univ Nat Resources & Life Sci, Inst Hydrol & Water Management, Vienna, Austria
[2] Johannes Kepler Univ Linz, LIT AI Lab, Linz, Austria
[3] Johannes Kepler Univ Linz, Inst Machine Learning, Linz, Austria
基金
奥地利科学基金会;
关键词
regionalization; machine learning; rainfall‐ runoff modeling; transfer functions; optimization; distributed models; SENSITIVITY-ANALYSIS; RUNOFF; INFORMATION; PERFORMANCE; REPRESENTATION; SIMULATION; CHALLENGES; SNOW;
D O I
10.1029/2020WR027385
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Estimating parameters for distributed hydrological models is a challenging and long studied task. Parameter transfer functions, which define model parameters as functions of geophysical properties of a catchment, might improve the calibration procedure, increase process realism, and can enable prediction in ungauged areas. We present the function space optimization (FSO), a symbolic regression method for estimating parameter transfer functions for distributed hydrological models. FSO is based on the idea of transferring the search for mathematical expressions into a continuous vector space that can be used for optimization. This is accomplished by using a text generating neural network with a variational autoencoder architecture that can learn to compress the information of mathematical functions. To evaluate the performance of FSO, we conducted a case study using a parsimonious hydrological model and synthetic discharge data. The case study consisted of two FSO applications: single-criteria FSO, where only discharge was used for optimization, and multicriteria FSO, where additional spatiotemporal observations of model states were used for transfer function estimation. The results show that FSO is able to estimate transfer functions correctly or approximate them sufficiently. We observed a reduced fit of the parameter density functions resulting from the inferred transfer functions for less sensitive model parameters. For those it was sufficient to estimate functions resulting in parameter distributions with approximately the same mean parameter values as the real transfer functions. The results of the multicriteria FSO showed that using multiple spatiotemporal observations for optimization increased the quality of estimation considerably.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Symbolic Regression for the Estimation of Transfer Functions of Hydrological Models
    Klotz, D.
    Herrnegger, M.
    Schulz, K.
    [J]. WATER RESOURCES RESEARCH, 2017, 53 (11) : 9402 - 9423
  • [2] Sequential Parameter Optimization for Symbolic Regression
    Bartz-Beielstein, Thomas
    Flasch, Oliver
    Zaefferer, Martin
    [J]. PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), 2012, : 495 - 495
  • [3] Regionalisierung hydrologischer Modelle mit Function Space OptimizationRegionalization of hydrological models using function space optimization
    Moritz Feigl
    Mathew Herrnegger
    Robert Schweppe
    Stephan Thober
    Daniel Klotz
    Luis Samaniego
    Karsten Schulz
    [J]. Österreichische Wasser- und Abfallwirtschaft, 2021, 73 (7-8) : 281 - 294
  • [4] A parameter optimization method for radial basis function type models
    Peng, H
    Ozaki, T
    Haggan-Ozaki, V
    Toyoda, Y
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (02): : 432 - 438
  • [6] Symbolic manipulation of transfer functions and state space realizations
    Ho, DWC
    Lam, J
    Tin, SK
    Han, CY
    [J]. IEEE TRANSACTIONS ON EDUCATION, 1996, 39 (02) : 230 - 242
  • [7] Window subsampling of estimating functions with application to regression models
    Heagerty, PJ
    Lumley, T
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (449) : 197 - 211
  • [8] Sensitivity of regionalized transfer-function noise models to the input and parameter transfer method
    Yuan, Xing
    Xie, Zhenghui
    Liang, Miaoling
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2009, 54 (03): : 639 - 651
  • [9] DYNAMIC CHARACTERISTICS (TRANSFER FUNCTIONS) OF LINEAR REGRESSION MODELS AND THEIR APPLICATIONS. PART 1. A METHOD OF TRANSFER FUNCTION COMPUTATION.
    Boychuk, L.M.
    Ivakhnenko, N.A.
    [J]. Soviet automatic control, 1983, 16 (04): : 1 - 9
  • [10] Improved parameter estimation for hydrological models using weighted object functions
    Stein, A
    Zaadnoordijk, WJ
    [J]. HYDROLOGICAL PROCESSES, 1999, 13 (09) : 1315 - 1328