Symbolic Regression for the Estimation of Transfer Functions of Hydrological Models

被引:21
|
作者
Klotz, D. [1 ]
Herrnegger, M. [1 ]
Schulz, K. [1 ]
机构
[1] Univ Nat Resources & Life Sci, Inst Water Management Hydrol & Hydraul Engn, Vienna, Austria
关键词
transfer function estimation; regionalization; symbolic regression; model calibration; virtual experiments; PARAMETER-ESTIMATION; REGIONALIZATION METHODS; RUNOFF; UNCERTAINTY; CALIBRATION; DRAINAGE; BASINS; SIZE;
D O I
10.1002/2017WR021253
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Current concepts for parameter regionalization of spatially distributed rainfall-runoff models rely on the a priori definition of transfer functions that globally map land surface characteristics (such as soil texture, land use, and digital elevation) into the model parameter space. However, these transfer functions are often chosen ad hoc or derived from small-scale experiments. This study proposes and tests an approach for inferring the structure and parametrization of possible transfer functions from runoff data to potentially circumvent these difficulties. The concept uses context-free grammars to generate possible proposition for transfer functions. The resulting structure can then be parametrized with classical optimization techniques. Several virtual experiments are performed to examine the potential for an appropriate estimation of transfer function, all of them using a very simple conceptual rainfall-runoff model with data from the Austrian Mur catchment. The results suggest that a priori defined transfer functions are in general well identifiable by the method. However, the deduction process might be inhibited, e.g., by noise in the runoff observation data, often leading to transfer function estimates of lower structural complexity.
引用
收藏
页码:9402 / 9423
页数:22
相关论文
共 50 条
  • [1] Function Space Optimization: A Symbolic Regression Method for Estimating Parameter Transfer Functions for Hydrological Models
    Feigl, M.
    Herrnegger, M.
    Klotz, D.
    Schulz, K.
    [J]. WATER RESOURCES RESEARCH, 2020, 56 (10)
  • [2] Semiparametric estimation of regression functions in autoregressive models
    Yu, Zhuoxi
    Wang, Dehui
    Shi, Ningzhong
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (02) : 165 - 172
  • [3] Nonparametric Estimation of Regression Functions in Point Process Models
    Sebastian Döhler
    Ludger Rüschendorf
    [J]. Statistical Inference for Stochastic Processes, 2003, 6 (3) : 291 - 307
  • [4] Estimation of smooth regression functions in monotone response models
    Pal, Jayanta Kumar
    Banerjee, Moulinath
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 3125 - 3143
  • [5] Improved parameter estimation for hydrological models using weighted object functions
    Stein, A
    Zaadnoordijk, WJ
    [J]. HYDROLOGICAL PROCESSES, 1999, 13 (09) : 1315 - 1328
  • [6] Estimation and regularization techniques for regression models with multidimensional prediction functions
    Schmid, Matthias
    Potapov, Sergej
    Pfahlberg, Annette
    Hothorn, Torsten
    [J]. STATISTICS AND COMPUTING, 2010, 20 (02) : 139 - 150
  • [7] Estimation and regularization techniques for regression models with multidimensional prediction functions
    Matthias Schmid
    Sergej Potapov
    Annette Pfahlberg
    Torsten Hothorn
    [J]. Statistics and Computing, 2010, 20 : 139 - 150
  • [8] Heat transfer correlations by symbolic regression
    Cai, Weihua
    Pacheco-Vega, Arturo
    Sen, Mihir
    Yang, K. T.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (23-24) : 4352 - 4359
  • [9] Distilling Financial Models by Symbolic Regression
    La Malfa, Gabriele
    La Malfa, Emanuele
    Belavkin, Roman
    Pardalos, Panos M.
    Nicosia, Giuseppe
    [J]. MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 502 - 517
  • [10] Symbolic regression of generative network models
    Menezes, Telmo
    Roth, Camille
    [J]. SCIENTIFIC REPORTS, 2014, 4