Function Space Optimization: A Symbolic Regression Method for Estimating Parameter Transfer Functions for Hydrological Models

被引:15
|
作者
Feigl, M. [1 ]
Herrnegger, M. [1 ]
Klotz, D. [1 ,2 ,3 ]
Schulz, K. [1 ]
机构
[1] Univ Nat Resources & Life Sci, Inst Hydrol & Water Management, Vienna, Austria
[2] Johannes Kepler Univ Linz, LIT AI Lab, Linz, Austria
[3] Johannes Kepler Univ Linz, Inst Machine Learning, Linz, Austria
基金
奥地利科学基金会;
关键词
regionalization; machine learning; rainfall‐ runoff modeling; transfer functions; optimization; distributed models; SENSITIVITY-ANALYSIS; RUNOFF; INFORMATION; PERFORMANCE; REPRESENTATION; SIMULATION; CHALLENGES; SNOW;
D O I
10.1029/2020WR027385
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Estimating parameters for distributed hydrological models is a challenging and long studied task. Parameter transfer functions, which define model parameters as functions of geophysical properties of a catchment, might improve the calibration procedure, increase process realism, and can enable prediction in ungauged areas. We present the function space optimization (FSO), a symbolic regression method for estimating parameter transfer functions for distributed hydrological models. FSO is based on the idea of transferring the search for mathematical expressions into a continuous vector space that can be used for optimization. This is accomplished by using a text generating neural network with a variational autoencoder architecture that can learn to compress the information of mathematical functions. To evaluate the performance of FSO, we conducted a case study using a parsimonious hydrological model and synthetic discharge data. The case study consisted of two FSO applications: single-criteria FSO, where only discharge was used for optimization, and multicriteria FSO, where additional spatiotemporal observations of model states were used for transfer function estimation. The results show that FSO is able to estimate transfer functions correctly or approximate them sufficiently. We observed a reduced fit of the parameter density functions resulting from the inferred transfer functions for less sensitive model parameters. For those it was sufficient to estimate functions resulting in parameter distributions with approximately the same mean parameter values as the real transfer functions. The results of the multicriteria FSO showed that using multiple spatiotemporal observations for optimization increased the quality of estimation considerably.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Estimating function method for nonnegative autoregressive models
    Prasad, E. Hari
    Balakrishna, N.
    [J]. STATISTICA NEERLANDICA, 2023, 77 (04) : 471 - 496
  • [32] A realization method of the transfer functions containing variable parameter
    Kawakami, A
    [J]. SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 2048 - 2051
  • [33] A realization method of the transfer functions containing variable parameter
    Kawakami, A
    [J]. ISIE '97 - PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-3, 1997, : 948 - 951
  • [34] A realization method of the transfer functions containing variable parameter
    Kawakami, A
    [J]. SYSTEM STRUCTURE AND CONTROL 1995, 1996, : 67 - 71
  • [35] Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions
    Gomes, Fabricio M.
    Pereira, Felix M.
    Silva, Aneirson F.
    Silva, Messias B.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2019, 179 : 21 - 33
  • [36] Estimating the Parameters of Nonlinear Regression Models Through Particle Swarm Optimization
    Ozsoy, Volkan Soner
    Orkcu, H. Hasan
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2016, 29 (01): : 187 - 199
  • [37] Confidence intervals for the regression parameter based on weighted log-rank estimating functions
    Lee, Seung-Hwan
    [J]. COMPUTATIONAL STATISTICS, 2010, 25 (03) : 429 - 440
  • [38] Confidence intervals for the regression parameter based on weighted log-rank estimating functions
    Seung-Hwan Lee
    [J]. Computational Statistics, 2010, 25 : 429 - 440
  • [39] Comparison and Optimization of the Parameter Identification Technique for Estimating Ship Response Models
    Zhu, Man
    Hahn, Axel
    Wen, Yuan-qiao
    Bolles, Andre
    [J]. CONFERENCE PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON CONTROL SCIENCE AND SYSTEMS ENGINEERING (ICCSSE), 2017, : 743 - 750
  • [40] A regression method for spatial disease rates: An estimating function approach
    Yasui, Y
    Lele, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (437) : 21 - 32