State-space models with finite dimensional dependence

被引:8
|
作者
Gourieroux, C [1 ]
Jasiak, J [1 ]
机构
[1] York Univ, N York, ON M3J 1P3, Canada
关键词
predictor space; finite dimensional dependence; canonical analysis; filtering; smoothing;
D O I
10.1111/1467-9892.00247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider nonlinear state-space models, where the state variable (fit) is Markov, stationary and features finite dimensional dependence (FDD), i.e. admits a transition function of the type: pi(xi(t)\xi(t-l)) = pi(xi(t))a'(xi(t))b(xi(t-l)), where pi(xi(t)) denotes the marginal distribution of xi(t), with a finite number of cross-effects between the present and past values. We discuss various characterizations of the FDD condition in terms of the predictor space and nonlinear canonical decomposition. The FDD models are shown to admit explicit recursive formulas for filtering and smoothing of the observable process, that arise as an extension of the Kitagawa approach. The filtering and smoothing algorithms are given in the paper.
引用
收藏
页码:665 / 678
页数:14
相关论文
共 50 条
  • [21] State-Space Models for Control and Identification
    [J]. 2005, Springer Verlag (308):
  • [22] DERIVATION OF STATE-SPACE MODELS OF CRYSTALLIZERS
    DEWOLF, S
    JAGER, J
    VISSER, B
    KRAMER, HJM
    BOSGRA, OH
    [J]. ACS SYMPOSIUM SERIES, 1990, 438 : 144 - 158
  • [23] State-space estimation with uncertain models
    Sayed, AH
    Subramanian, A
    [J]. TOTAL LEAST SQUARES AND ERRORS-IN-VARIABLES MODELING: ANALYSIS, ALGORITHMS AND APPLICATIONS, 2002, : 191 - 202
  • [24] Identification of structured state-space models
    Yu, Chengpu
    Ljung, Lennart
    Verhaegen, Michel
    [J]. AUTOMATICA, 2018, 90 : 54 - 61
  • [25] Approximate Methods for State-Space Models
    Koyama, Shinsuke
    Perez-Bolde, Lucia Castellanos
    Shalizi, Cosma Rohilla
    Kass, Robert E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 170 - 180
  • [26] State-space models for control and identification
    Raynaud, HF
    Kulcsár, C
    Hammi, R
    [J]. ADVANCES IN COMMUNICATION CONTROL NETWORKS, 2005, 308 : 177 - 197
  • [27] Smoothing algorithms for state-space models
    Briers, Mark
    Doucet, Arnaud
    Maskell, Simon
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (01) : 61 - 89
  • [28] Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
    Finke, Axel
    Singh, Sumeetpal S.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 5982 - 5994
  • [29] Stability robust for fractional generalized multi-dimensional state-space models
    Salmi, Souad
    Bouagada, Djillali
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (04) : 432 - 446
  • [30] STATE-SPACE REPRESENTATIONS FOR 2-DIMENSIONAL CONTROL-SYSTEM MODELS
    WHALLEY, R
    [J]. APPLIED MATHEMATICAL MODELLING, 1991, 15 (02) : 90 - 97