Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models

被引:12
|
作者
Finke, Axel [1 ]
Singh, Sumeetpal S. [2 ,3 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1SZ, England
[3] Alan Turing Inst, London NW1 2DB, England
基金
英国工程与自然科学研究理事会;
关键词
High dimensions; smoothing; particle filter; sequential Monte Carlo; state-space model; PARTICLE; SIMULATION; STABILITY;
D O I
10.1109/TSP.2017.2733504
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present approximate algorithms for performing smoothing in a class of high-dimensional state-space models via sequential Monte Carlo methods (particle filters). In high dimensions, a prohibitively large number ofMonte Carlo samples (particles), growing exponentially in the dimension of the state space, are usually required to obtain a useful smoother. Employing blocking approximations, we exploit the spatial ergodicity properties of the model to circumvent this curse of dimensionality. We thus obtain approximate smoothers that can be computed recursively in time and parallel in space. First, we show that the bias of our blocked smoother is bounded uniformly in the time horizon and in the model dimension. We then approximate the blocked smoother with particles and derive the asymptotic variance of idealized versions of our blocked particle smoother to show that variance is no longer adversely effected by the dimension of the model. Finally, we employ our method to successfully performmaximum-likelihood estimation via stochastic gradient-ascent and stochastic expectationmaximization algorithms in a 100-dimensional state-space model.
引用
收藏
页码:5982 / 5994
页数:13
相关论文
共 50 条
  • [1] A STABLE PARTICLE FILTER FOR A CLASS OF HIGH-DIMENSIONAL STATE-SPACE MODELS
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    Kamatani, Kengo
    Zhou, Yan
    [J]. ADVANCES IN APPLIED PROBABILITY, 2017, 49 (01) : 24 - 48
  • [2] Bayesian Filtering for High-Dimensional State-Space Models With State Partition and Error Compensation
    Li, Ke
    Zhao, Shunyi
    Huang, Biao
    Liu, Fei
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (05) : 1239 - 1249
  • [3] Bayesian Filtering for High-Dimensional State-Space Models With State Partition and Error Compensation
    Ke Li
    Shunyi Zhao
    Biao Huang
    Fei Liu
    [J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11 (05) : 1239 - 1249
  • [4] On Particle Methods for Parameter Estimation in State-Space Models
    Kantas, Nikolas
    Doucet, Arnaud
    Singh, Sumeetpal S.
    Maciejowski, Jan
    Chopin, Nicolas
    [J]. STATISTICAL SCIENCE, 2015, 30 (03) : 328 - 351
  • [5] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    [J]. 2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [6] Approximate likelihood with proxy variables for parameter estimation in high-dimensional factor copula models
    Pavel Krupskii
    Harry Joe
    [J]. Statistical Papers, 2022, 63 : 543 - 569
  • [7] Smoothing algorithms for state-space models
    Briers, Mark
    Doucet, Arnaud
    Maskell, Simon
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (01) : 61 - 89
  • [8] Approximate likelihood with proxy variables for parameter estimation in high-dimensional factor copula models
    Krupskii, Pavel
    Joe, Harry
    [J]. STATISTICAL PAPERS, 2022, 63 (02) : 543 - 569
  • [9] A Lagged Particle Filter for Stable Filtering of Certain High-Dimensional State-Space Models
    Ruzayqat, Hamza
    Er-raiy, Aimad
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    Kantas, Nikolas
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03): : 1130 - 1161
  • [10] Approximate Methods for State-Space Models
    Koyama, Shinsuke
    Perez-Bolde, Lucia Castellanos
    Shalizi, Cosma Rohilla
    Kass, Robert E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 170 - 180