Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models

被引:12
|
作者
Finke, Axel [1 ]
Singh, Sumeetpal S. [2 ,3 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1SZ, England
[3] Alan Turing Inst, London NW1 2DB, England
基金
英国工程与自然科学研究理事会;
关键词
High dimensions; smoothing; particle filter; sequential Monte Carlo; state-space model; PARTICLE; SIMULATION; STABILITY;
D O I
10.1109/TSP.2017.2733504
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present approximate algorithms for performing smoothing in a class of high-dimensional state-space models via sequential Monte Carlo methods (particle filters). In high dimensions, a prohibitively large number ofMonte Carlo samples (particles), growing exponentially in the dimension of the state space, are usually required to obtain a useful smoother. Employing blocking approximations, we exploit the spatial ergodicity properties of the model to circumvent this curse of dimensionality. We thus obtain approximate smoothers that can be computed recursively in time and parallel in space. First, we show that the bias of our blocked smoother is bounded uniformly in the time horizon and in the model dimension. We then approximate the blocked smoother with particles and derive the asymptotic variance of idealized versions of our blocked particle smoother to show that variance is no longer adversely effected by the dimension of the model. Finally, we employ our method to successfully performmaximum-likelihood estimation via stochastic gradient-ascent and stochastic expectationmaximization algorithms in a 100-dimensional state-space model.
引用
收藏
页码:5982 / 5994
页数:13
相关论文
共 50 条
  • [41] Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models
    Kern, Skyler
    McGuinn, Mary E.
    Smith, Katherine M.
    Pinardi, Nadia
    Niemeyer, Kyle E.
    Lovenduski, Nicole S.
    Hamlington, Peter E.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (02) : 621 - 649
  • [42] Sensitivity models for nonlinear filters with application to recursive parameter estimation for nonlinear state-space models
    Bohn, C
    Unbehauen, H
    [J]. IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (02): : 137 - 145
  • [43] On simultaneous on-line state and parameter estimation in non-linear state-space models
    Tulsyan, Aditya
    Huang, Biao
    Gopaluni, R. Bhushan
    Forbes, J. Fraser
    [J]. JOURNAL OF PROCESS CONTROL, 2013, 23 (04) : 516 - 526
  • [44] Gaussian Variational Approximations for High-dimensional State Space Models
    Quiroz, Matias
    Nott, David J.
    Kohn, Robert
    [J]. BAYESIAN ANALYSIS, 2023, 18 (03): : 989 - 1016
  • [45] Simulation smoothing for state-space models: A computational efficiency analysis
    McCausland, William J.
    Miller, Shirley
    Pelletier, Denis
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 199 - 212
  • [46] Switching state-space models - Likelihood function, filtering and smoothing
    Billio, M
    Monfort, A
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 68 (01) : 65 - 103
  • [47] Robust Smoothing for State-Space Models with Unknown Noise Statistics
    Dehghannasiri, Roozbeh
    Qian, Xiaoning
    Dougherty, Edward R.
    [J]. 2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 1024 - 1028
  • [48] Extraction of Airways with Probabilistic State-Space Models and Bayesian Smoothing
    Selvan, Raghavendra
    Petersen, Jens
    Pedersen, Jesper H.
    de Bruijne, Marleen
    [J]. GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, COMPUTATIONAL ANATOMY AND IMAGING GENETICS, 2017, 10551 : 53 - 63
  • [49] Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models
    Olsson, Jimmy
    Cappe, Olivier
    Douc, Randal
    Moulines, Eric
    [J]. BERNOULLI, 2008, 14 (01) : 155 - 179
  • [50] Noise Moment and Parameter Estimation of State-Space Model
    Kost, Oliver
    Dunik, Jindrich
    Straka, Ondrej
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 891 - 896