Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models

被引:0
|
作者
Kern, Skyler [1 ]
McGuinn, Mary E. [1 ]
Smith, Katherine M. [2 ]
Pinardi, Nadia [3 ]
Niemeyer, Kyle E. [4 ]
Lovenduski, Nicole S. [5 ]
Hamlington, Peter E. [1 ]
机构
[1] Univ Colorado, Paul M Rady Dept Mech Engn, Boulder, CO 80309 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
[3] Univ Bologna, Dept Phys & Astron, Bologna, Italy
[4] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR USA
[5] Univ Colorado, Inst Arctic & Alpine Res, Dept Atmospher & Ocean Sci, Boulder, CO USA
基金
美国国家科学基金会;
关键词
PELAGIC ECOSYSTEM MODEL; ATLANTIC TIME-SERIES; DATA-BASED OPTIMIZATION; NORTH-ATLANTIC; MARINE ECOSYSTEM; 1D-ECOSYSTEM MODEL; DATA ASSIMILATION; LOCATIONS; FLUX MODEL; PART I;
D O I
10.5194/gmd-17-621-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Biogeochemical (BGC) models are widely used in ocean simulations for a range of applications but typically include parameters that are determined based on a combination of empiricism and convention. Here, we describe and demonstrate an optimization-based parameter estimation method for high-dimensional (in parameter space) BGC ocean models. Our computationally efficient method combines the respective benefits of global and local optimization techniques and enables simultaneous parameter estimation at multiple ocean locations using multiple state variables. We demonstrate the method for a 17-state-variable BGC model with 51 uncertain parameters, where a one-dimensional (in space) physical model is used to represent vertical mixing. We perform a twin-simulation experiment to test the accuracy of the method in recovering known parameters. We then use the method to simultaneously match multi-variable observational data collected at sites in the subtropical North Atlantic and Pacific. We examine the effects of different objective functions, sometimes referred to as cost functions, which quantify the disagreement between model and observational data. We further examine increasing levels of data sparsity and the choice of state variables used during the optimization. We end with a discussion of how the method can be applied to other BGC models, ocean locations, and mixing representations.
引用
收藏
页码:621 / 649
页数:29
相关论文
共 50 条
  • [1] Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models
    Ruan, Lingyan
    Yuan, Ming
    Zou, Hui
    [J]. NEURAL COMPUTATION, 2011, 23 (06) : 1605 - 1622
  • [2] COMPUTATIONALLY EFFICIENT ALGORITHMS FOR HIGH-DIMENSIONAL ROBUST ESTIMATORS
    MOUNT, DM
    NETANYAHU, NS
    [J]. CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1994, 56 (04): : 289 - 303
  • [3] Computationally efficient Bayesian estimation of high-dimensional Archimedean copulas with discrete and mixed margins
    D. Gunawan
    M.-N. Tran
    K. Suzuki
    J. Dick
    R. Kohn
    [J]. Statistics and Computing, 2019, 29 : 933 - 946
  • [4] Computationally efficient Bayesian estimation of high-dimensional Archimedean copulas with discrete and mixed margins
    Gunawan, D.
    Tran, M. -N.
    Suzuki, K.
    Dick, J.
    Kohn, R.
    [J]. STATISTICS AND COMPUTING, 2019, 29 (05) : 933 - 946
  • [5] Simple parameter estimation for complex models - Testing evolutionary techniques on 3-dimensional biogeochemical ocean models
    Mattern, Jann Paul
    Edwards, Christopher A.
    [J]. JOURNAL OF MARINE SYSTEMS, 2017, 165 : 139 - 152
  • [6] High-dimensional cryptographic quantum parameter estimation
    Dong Xie
    Chunling Xu
    Jianyong Chen
    An Min Wang
    [J]. Quantum Information Processing, 2018, 17
  • [7] High-dimensional cryptographic quantum parameter estimation
    Xie, Dong
    Xu, Chunling
    Chen, Jianyong
    Wang, An Min
    [J]. QUANTUM INFORMATION PROCESSING, 2018, 17 (05)
  • [8] Semiparametric efficient estimation in high-dimensional partial linear regression models
    Fu, Xinyu
    Huang, Mian
    Yao, Weixin
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (03) : 1259 - 1287
  • [9] Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
    Finke, Axel
    Singh, Sumeetpal S.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 5982 - 5994
  • [10] Computationally Efficient High-Dimensional Bayesian Optimization via Variable Selection
    Shen, Yihang
    Kingsford, Carl
    [J]. INTERNATIONAL CONFERENCE ON AUTOMATED MACHINE LEARNING, VOL 224, 2023, 224