An Adaptive Finite Element Method with a Modified Perfectly Matched Layer Formulation for Diffraction Gratings
被引:0
|
作者:
Chen, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Chen, Jie
[1
]
Wang, Desheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Wang, Desheng
[1
]
Wu, Haijun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R ChinaNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Wu, Haijun
[2
]
机构:
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
Diffraction grating;
adaptive finite element method;
PML;
a posteriori error estimates;
INTEGRAL-EQUATION;
SCATTERING;
CONVERGENCE;
D O I:
暂无
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
For numerical simulation of one-dimensional diffraction gratings both in TE and TM polarization, an enhanced adaptive finite element method is proposed in this paper. A modified perfectly matched layer (PML) formulation is proposed for the truncation of the unbounded domain, which results in a homogeneous Dirichlet boundary condition and the corresponding error estimate is greatly simplified. The a posteriori error estimates for the adaptive finite element method are provided. Moreover, a lower bound is obtained to demonstrate that the error estimates obtained are sharp.
机构:
Fudan Univ, Sch Math Sci, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
Wu, Xinming
Zheng, Weiying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, NCMIS,LSEC, Beijing 100190, Peoples R ChinaFudan Univ, Sch Math Sci, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China