Up-to boundary regularity for a singular perturbation problem of p-Laplacian type

被引:7
|
作者
Karakhanyan, AL [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Ist Applicat, Canberra, ACT 0200, Australia
关键词
singular perturbation problem; free boundary problem; p-Laplace operator; global gradient bounds;
D O I
10.1016/j.jde.2005.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in establishing up-to boundary uniform estimates for the one phase singular perturbation problem involving a nonlinear singular/degenerate elliptic operator. Our main result states: if Omega subset of R-n is a C-1,C-a domain, f is an element of C-1,C-a (Omega) for some 0 < a < 1 and u(epsilon) verifies div A(x, u(epsilon), del u(epsilon)) = beta(epsilon)(u(epsilon)) in Omega, 0 <= u(epsilon) <= 1 in Omega, u(epsilon) = f on partial derivative Omega, where epsilon > 0, beta(epsilon) (t) = epsilon/1 beta (epsilon/t) and 0 <= beta(t) <= B chi({0 < t < 1}), (R)integral beta(epsilon)(t) dt = M > 0, with some positive constants B and M, then there exists a constant C > 0 independent of E such that vertical bar vertical bar del u epsilon vertical bar vertical bar(L infinity(Omega)) <= C. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:558 / 571
页数:14
相关论文
共 50 条
  • [31] AN INVERSE PROBLEM FOR THE p-LAPLACIAN: BOUNDARY DETERMINATION
    Salo, Mikko
    Zhong, Xiao
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) : 2474 - 2495
  • [32] A study of free boundary problem for the p-Laplacian
    Ly, I
    Seck, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 899 - 902
  • [33] The Robin problem for singular p-Laplacian equation in a cone
    Borsuk, Mikhail
    Jankowski, Sebastian
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (03) : 333 - 345
  • [34] Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems
    Cianchi, Andrea
    Maz'ya, Vladimir
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (03) : 571 - 595
  • [35] Positive solutions of singular four-point boundary value problem with p-Laplacian
    Miao, Chunmei
    Pang, Huihui
    Ge, Weigao
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2009, (42) : 1 - 16
  • [36] TWO SOLUTIONS FOR A PARAMETRIC SINGULAR p-LAPLACIAN PROBLEM
    Candito, Pasquale
    Guarnotta, Umberto
    Perera, Kanishka
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2020, 4 (03): : 455 - 468
  • [37] ON THE GLOBAL REGULARITY FOR NONLINEAR SYSTEMS OF THE p-LAPLACIAN TYPE
    da Veiga, Hugo Beirao
    Crispo, Francesca
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05): : 1173 - 1191
  • [38] A HOPF'S LEMMA AND THE BOUNDARY REGULARITY FOR THE FRACTIONAL P-LAPLACIAN
    Jin, Lingyu
    Li, Yan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) : 1477 - 1495
  • [39] Existence and regularity results for p-Laplacian boundary value problems
    Boccardo L.
    Moreno-Mérida L.
    SeMA Journal, 2014, 66 (1) : 9 - 27
  • [40] The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary
    Ros-Oton, Xavier
    Serra, Joaquim
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (03): : 275 - 302