Up-to boundary regularity for a singular perturbation problem of p-Laplacian type

被引:7
|
作者
Karakhanyan, AL [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Ist Applicat, Canberra, ACT 0200, Australia
关键词
singular perturbation problem; free boundary problem; p-Laplace operator; global gradient bounds;
D O I
10.1016/j.jde.2005.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in establishing up-to boundary uniform estimates for the one phase singular perturbation problem involving a nonlinear singular/degenerate elliptic operator. Our main result states: if Omega subset of R-n is a C-1,C-a domain, f is an element of C-1,C-a (Omega) for some 0 < a < 1 and u(epsilon) verifies div A(x, u(epsilon), del u(epsilon)) = beta(epsilon)(u(epsilon)) in Omega, 0 <= u(epsilon) <= 1 in Omega, u(epsilon) = f on partial derivative Omega, where epsilon > 0, beta(epsilon) (t) = epsilon/1 beta (epsilon/t) and 0 <= beta(t) <= B chi({0 < t < 1}), (R)integral beta(epsilon)(t) dt = M > 0, with some positive constants B and M, then there exists a constant C > 0 independent of E such that vertical bar vertical bar del u epsilon vertical bar vertical bar(L infinity(Omega)) <= C. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:558 / 571
页数:14
相关论文
共 50 条