Efficient Adaptive Algorithms for Elliptic PDEs with Random Data

被引:12
|
作者
Bespalov, Alex [1 ]
Rocchi, Leonardo [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
来源
基金
英国工程与自然科学研究理事会;
关键词
stochastic Galerkin methods; stochastic finite elements; PDEs with random data; adaptive methods; a posteriori error estimation; singularities; parametric PDEs; PARAMETRIC OPERATOR-EQUATIONS; FINITE-ELEMENT METHODS; MESH REFINEMENT;
D O I
10.1137/17M1139928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a novel adaptive algorithm implementing the stochastic Galerkin finite element method for numerical solution of elliptic PDE problems with correlated random data. The algorithm employs a hierarchical a posteriori error estimation strategy which also provides effective estimates of the error reduction for enhanced approximations. These error reduction indicators are used in the algorithm to perform a balanced adaptive refinement of spatial and parametric components of Galerkin approximations. The results of numerical tests demonstrating the efficiency of the algorithm for three representative PDEs with random coefficients are reported. The software used for numerical experiments is available online.
引用
收藏
页码:243 / 272
页数:30
相关论文
共 50 条