Efficient Adaptive Algorithms for Elliptic PDEs with Random Data

被引:12
|
作者
Bespalov, Alex [1 ]
Rocchi, Leonardo [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
来源
基金
英国工程与自然科学研究理事会;
关键词
stochastic Galerkin methods; stochastic finite elements; PDEs with random data; adaptive methods; a posteriori error estimation; singularities; parametric PDEs; PARAMETRIC OPERATOR-EQUATIONS; FINITE-ELEMENT METHODS; MESH REFINEMENT;
D O I
10.1137/17M1139928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a novel adaptive algorithm implementing the stochastic Galerkin finite element method for numerical solution of elliptic PDE problems with correlated random data. The algorithm employs a hierarchical a posteriori error estimation strategy which also provides effective estimates of the error reduction for enhanced approximations. These error reduction indicators are used in the algorithm to perform a balanced adaptive refinement of spatial and parametric components of Galerkin approximations. The results of numerical tests demonstrating the efficiency of the algorithm for three representative PDEs with random coefficients are reported. The software used for numerical experiments is available online.
引用
收藏
页码:243 / 272
页数:30
相关论文
共 50 条
  • [31] Method of Green's Potentials for Elliptic PDEs in Domains with Random Apertures
    Reshniak, Viktor
    Melnikov, Yuri
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (03)
  • [32] Examples of computational approaches for elliptic, possibly multiscale PDEs with random inputs
    Le Bris, Claude
    Legoll, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 328 : 455 - 473
  • [33] Proper orthogonal decomposition method for multiscale elliptic PDEs with random coefficients
    Ma, Dingjiong
    Ching, Wai-ki
    Zhang, Zhiwen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 370
  • [34] Multilevel tensor approximation of PDEs with random data
    Jonas Ballani
    Daniel Kressner
    Michael D. Peters
    Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 400 - 427
  • [35] Multilevel tensor approximation of PDEs with random data
    Ballani, Jonas
    Kressner, Daniel
    Peters, Michael D.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (03): : 400 - 427
  • [36] An Efficient and Accurate Method for the Identification of the Most Influential Random Parameters Appearing in the Input Data for PDEs
    Labovsky, A.
    Gunzburger, Max
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2014, 2 (01): : 82 - 105
  • [37] Efficient algorithms for elliptic curve cryptosystems
    Guajardo, J
    Paar, C
    ADVANCES IN CRYPTOLOGY - CRYPTO'97, PROCEEDINGS, 1997, 1294 : 342 - 356
  • [38] An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs
    Dijkema, Tammo Jan
    Schwab, Christoph
    Stevenson, Rob
    CONSTRUCTIVE APPROXIMATION, 2009, 30 (03) : 423 - 455
  • [39] An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient
    Nobile, Fabio
    Tamellini, Lorenzo
    Tesei, Francesco
    Tempone, Raul
    SPARSE GRIDS AND APPLICATIONS - STUTTGART 2014, 2016, 109 : 191 - 220
  • [40] An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs
    Tammo Jan Dijkema
    Christoph Schwab
    Rob Stevenson
    Constructive Approximation, 2009, 30 : 423 - 455