Efficient Adaptive Algorithms for Elliptic PDEs with Random Data

被引:12
|
作者
Bespalov, Alex [1 ]
Rocchi, Leonardo [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
来源
基金
英国工程与自然科学研究理事会;
关键词
stochastic Galerkin methods; stochastic finite elements; PDEs with random data; adaptive methods; a posteriori error estimation; singularities; parametric PDEs; PARAMETRIC OPERATOR-EQUATIONS; FINITE-ELEMENT METHODS; MESH REFINEMENT;
D O I
10.1137/17M1139928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a novel adaptive algorithm implementing the stochastic Galerkin finite element method for numerical solution of elliptic PDE problems with correlated random data. The algorithm employs a hierarchical a posteriori error estimation strategy which also provides effective estimates of the error reduction for enhanced approximations. These error reduction indicators are used in the algorithm to perform a balanced adaptive refinement of spatial and parametric components of Galerkin approximations. The results of numerical tests demonstrating the efficiency of the algorithm for three representative PDEs with random coefficients are reported. The software used for numerical experiments is available online.
引用
收藏
页码:243 / 272
页数:30
相关论文
共 50 条
  • [1] RANDOM SAMPLING AND EFFICIENT ALGORITHMS FOR MULTISCALE PDEs
    Chen, Ke
    Li, Qin
    Lu, Jianfeng
    Wright, Stephen J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05): : A2974 - A3005
  • [2] A fully adaptive multilevel stochastic collocation strategy for solving elliptic PDEs with random data
    Lang, J.
    Scheichl, R.
    Silvester, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 419
  • [3] Parallel Multilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coefficients
    Zakharov, Petr
    Iliev, Oleg
    Mohring, Jan
    Shegunov, Nikolay
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 463 - 472
  • [4] SPARSE ADAPTIVE TAYLOR APPROXIMATION ALGORITHMS FOR PARAMETRIC AND STOCHASTIC ELLIPTIC PDES
    Chkifa, Abdellah
    Cohen, Albert
    DeVore, Ronald
    Schwab, Christoph
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (01): : 253 - 280
  • [5] An Adaptive ANOVA-Based Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficient
    Zhang, Zhiwen
    Hu, Xin
    Hou, Thomas Y.
    Lin, Guang
    Yan, Mike
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 16 (03) : 571 - 598
  • [6] A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients
    Cheng, Mulin
    Hou, Thomas Y.
    Yan, Mike
    Zhang, Zhiwen
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 452 - 493
  • [7] A MULTISCALE DATA-DRIVEN STOCHASTIC METHOD FOR ELLIPTIC PDEs WITH RANDOM COEFFICIENTS
    Zhang, Zhiwen
    Ci, Maolin
    Hou, Thomas Y.
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 173 - 204
  • [8] Expansion of random boundary excitations for elliptic PDEs
    Sabelfeld, Karl
    MONTE CARLO METHODS AND APPLICATIONS, 2008, 13 (5-6): : 405 - 453
  • [9] A PRIORI ERROR ANALYSIS OF STOCHASTIC GALERKIN MIXED APPROXIMATIONS OF ELLIPTIC PDEs WITH RANDOM DATA
    Bespalov, Alexei
    Powell, Catherine E.
    Silvester, David
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (04) : 2039 - 2063
  • [10] A Weighted POD Method for Elliptic PDEs with Random Inputs
    Venturi, Luca
    Ballarin, Francesco
    Rozza, Gianluigi
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 136 - 153