A Riemann jump problem for biharmonic functions in fractal domains

被引:1
|
作者
Abreu Blaya, Ricardo [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Chilpancingo, Mexico
关键词
Biharmonic functions; Fractals; Lipschitz classes; Riemann problem; DIRICHLET PROBLEM;
D O I
10.1007/s13324-020-00469-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Biharmonic functions are the solutions of the fourth order partial differential equation Delta Delta omega = 0. The purpose of this paper is to solve a kind of Riemann boundary value problem for biharmonic functions assuming higher order Lipschitz boundary data. We approach this problem making use of generalized Teodorescu transforms for obtaining the explicit expression of its solution in a Jordan domain Omega subset of R-2 with fractal boundary.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Riemann jump problem for biharmonic functions in fractal domains
    Ricardo Abreu Blaya
    Analysis and Mathematical Physics, 2021, 11
  • [2] A jump problem for β-analytic functions in domains with fractal boundaries
    Ricardo Abreu-Blaya
    Juan Bory-Reyes
    Jean-Marie Vilaire
    Revista Matemática Complutense, 2010, 23 : 105 - 111
  • [3] A jump problem for β-analytic functions in domains with fractal boundaries
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Vilaire, Jean-Marie
    REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01): : 105 - 111
  • [4] Riemann and Dirichlet Type Problems for Hyperanalytic Functions in Fractal Domains
    Juan Bory Reyes
    Ricardo Abreu Blaya
    Martín P. Árciga Alejandre
    Yudier Peña Pérez
    Complex Analysis and Operator Theory, 2018, 12 : 1369 - 1382
  • [5] Riemann and Dirichlet Type Problems for Hyperanalytic Functions in Fractal Domains
    Bory Reyes, Juan
    Abreu Blaya, Ricardo
    Arciga Alejandre, Martin P.
    Pena Perez, Yudier
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (05) : 1369 - 1382
  • [6] Biharmonic problem in exterior domains
    Amrouche, C
    Fontes, M
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (02) : 121 - 126
  • [7] The biharmonic Neumann problem in Lipschitz domains
    Verchota, Gregory C.
    ACTA MATHEMATICA, 2005, 194 (02) : 217 - 279
  • [8] A CONTOUR PROBLEM FOR BIHARMONIC FUNCTIONS
    MATARASSO, S
    RICERCHE DI MATEMATICA, 1968, 17 (01) : 144 - +
  • [9] On estimates of biharmonic functions on Lipschitz and convex domains
    Shen, Zhongwei
    JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (04) : 721 - 734
  • [10] On estimates of biharmonic functions on Lipschitz and convex domains
    Zhongwei Shen
    The Journal of Geometric Analysis, 2006, 16 : 721 - 734