A Riemann jump problem for biharmonic functions in fractal domains

被引:1
|
作者
Abreu Blaya, Ricardo [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Chilpancingo, Mexico
关键词
Biharmonic functions; Fractals; Lipschitz classes; Riemann problem; DIRICHLET PROBLEM;
D O I
10.1007/s13324-020-00469-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Biharmonic functions are the solutions of the fourth order partial differential equation Delta Delta omega = 0. The purpose of this paper is to solve a kind of Riemann boundary value problem for biharmonic functions assuming higher order Lipschitz boundary data. We approach this problem making use of generalized Teodorescu transforms for obtaining the explicit expression of its solution in a Jordan domain Omega subset of R-2 with fractal boundary.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] A bilinear estimate for biharmonic functions in Lipschitz domains
    Kilty, Joel
    Shen, Zhongwei
    MATHEMATISCHE ANNALEN, 2011, 349 (02) : 367 - 394
  • [12] On the Riemann problem in fractal elastic media
    Gutierrez Valencia, Diego Esteban
    Abreu Blaya, Ricardo
    Arciga Alejandre, Martin Patricio
    Pena Perez, Yudier
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (01)
  • [13] A bilinear estimate for biharmonic functions in Lipschitz domains
    Joel Kilty
    Zhongwei Shen
    Mathematische Annalen, 2011, 349 : 367 - 394
  • [14] On the Riemann problem in fractal elastic media
    Diego Esteban Gutierrez Valencia
    Ricardo Abreu Blaya
    Martín Patricio Árciga Alejandre
    Yudier Peña Pérez
    Analysis and Mathematical Physics, 2023, 13
  • [15] Solving the biharmonic Dirichlet problem on domains with corners
    De Coster, Colette
    Nicaise, Serge
    Sweers, Guido
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 854 - 871
  • [16] Electromagnetic Riemann-Hilbert Boundary Value Problem in Fractal Domains of R2
    Pena-Perez, Yudier
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Schneider, Baruch
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
  • [17] Steklov–Farwig Biharmonic Problem in Exterior Domains
    G. Migliaccio
    H. A. Matevossian
    Lobachevskii Journal of Mathematics, 2023, 44 : 2413 - 2428
  • [18] Biharmonic Problem for an Angle and Monogenic Functions
    Gryshchuk, S. V.
    Plaksa, S. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 74 (11) : 1686 - 1700
  • [19] Biharmonic Problem for an Angle and Monogenic Functions
    S. V. Gryshchuk
    S. A. Plaksa
    Ukrainian Mathematical Journal, 2023, 74 : 1686 - 1700
  • [20] On the Robin problem in fractal domains
    Bass, Richard F.
    Burdzy, Krzysztof
    Chen, Zhen-Qing
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 : 273 - 311