Quantum noise thermometry for bosonic Josephson junctions in the mean-field regime

被引:4
|
作者
Gottlieb, Alex D. [1 ]
Schumm, Thorsten [1 ,2 ]
机构
[1] Wolfgang Pauli Inst, A-1090 Vienna, Austria
[2] TU Wien, Atominst, Osterreich Univ, A-1020 Vienna, Austria
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 06期
关键词
boson systems; fluctuations; Hubbard model; Josephson effect; quantum noise; BOSE-EINSTEIN CONDENSATE; DOUBLE-WELL;
D O I
10.1103/PhysRevA.79.063601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Bosonic Josephson junctions can be realized by confining ultracold gases of bosons in multiwell traps and studied theoretically with the M-site Bose-Hubbard model. We show that canonical equilibrium states of the M-site Bose-Hubbard model may be approximated by mixtures of coherent states, provided the number of atoms is large and the total energy is comparable to k(B)T. Using this approximation, we study thermal fluctuations in bosonic Josephson junctions in the mean-field regime. Statistical estimates of the fluctuations of relative phase and number, obtained by averaging over many replicates of an experiment, can be used to estimate the temperature and the tunneling parameter or to test whether the experimental procedure is effectively sampling from a canonical thermal equilibrium ensemble.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Supercurrent in Graphene Josephson Junctions with Narrow Trenches in the Quantum Hall Regime
    Seredinski, Andrew
    Draelos, Anne
    Wei, Ming-Tso
    Ke, Chung-Ting
    Fleming, Tate
    Mehta, Yash
    Mancil, Ethan
    Li, Hengming
    Taniguchi, Takashi
    Watanabe, Kenji
    Tarucha, Seigo
    Yamamoto, Michihisa
    Borzenets, Ivan V.
    Amet, Francois
    Finkelstein, Gleb
    MRS ADVANCES, 2018, 3 (47-48): : 2855 - 2864
  • [42] Supercurrent in Graphene Josephson Junctions with Narrow Trenches in the Quantum Hall Regime
    Andrew Seredinski
    Anne Draelos
    Ming-Tso Wei
    Chung-Ting Ke
    Tate Fleming
    Yash Mehta
    Ethan Mancil
    Hengming Li
    Takashi Taniguchi
    Kenji Watanabe
    Seigo Tarucha
    Michihisa Yamamoto
    Ivan V. Borzenets
    François Amet
    Gleb Finkelstein
    MRS Advances, 2018, 3 (47-48) : 2855 - 2864
  • [43] Mean-field theory of quantum Brownian motion
    A.E. Allahverdyan
    R. Balian
    Th.M. Nieuwenhuizen
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 23 : 87 - 96
  • [44] Quantum mean-field asymptotics and multiscale analysis
    Ammari, Zied
    Breteaux, Sebastien
    Nier, Francis
    TUNISIAN JOURNAL OF MATHEMATICS, 2019, 1 (02) : 221 - 272
  • [45] Nonlinear interference in a mean-field quantum model
    Reinisch, Gilbert
    Gudmundsson, Vidar
    EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (04): : 699 - 705
  • [46] CRITICAL FLUCTUATIONS FOR QUANTUM MEAN-FIELD MODELS
    FANNES, M
    KOSSAKOWSKI, A
    VERBEURE, A
    JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) : 801 - 811
  • [47] MEAN-FIELD THEORY FOR VACANCIES IN A QUANTUM ANTIFERROMAGNET
    SHRAIMAN, BI
    SIGGIA, ED
    PHYSICAL REVIEW B, 1989, 40 (13): : 9162 - 9166
  • [48] Quantum Mean-field Limit to the Compressible Fluids
    Shen, Shunlin
    Wu, Jiahao
    FRONTIERS OF MATHEMATICS, 2025,
  • [49] ON THE BINDING OF POLARONS IN A MEAN-FIELD QUANTUM CRYSTAL
    Lewin, Mathieu
    Rougerie, Nicolas
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (03) : 629 - 656
  • [50] Mean-field theory for quantum gauge glasses
    Pazmandi, F.
    Zimanyi, G. T.
    Scalettar, R. T.
    Europhysics Letters, 38 (04):