Electrical Detection of Nucleic Acid Amplification Using an On-Chip Quasi-Reference Electrode and a PVC REFET

被引:38
|
作者
Salm, Eric [1 ,2 ]
Zhong, Yu [2 ,3 ]
Reddy, Bobby, Jr. [2 ,3 ]
Duarte-Guevara, Carlos [2 ,3 ]
Swaminathan, Vikhram [2 ,4 ]
Liu, Yi-Shao [5 ]
Bashir, Rashid [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[2] Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[5] Taiwan Semicond Mfg Co, Hsinchu, Taiwan
基金
美国农业部;
关键词
DNA-POLYMERASE REACTIONS; FIELD-EFFECT TRANSISTORS; REAL-TIME; PCR; OXIDES;
D O I
10.1021/ac500897t
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electrical detection of nucleic acid amplification through pH changes associated with nucleotide addition enables miniaturization, greater portability of testing apparatus, and reduced costs. However, current ion-sensitive field effect transistor methods for sensing nucleic acid amplification rely on establishing the fluid gate potential with a bulky, difficult to microfabricate reference electrode that limits the potential for massively parallel reaction detection. Here we demonstrate a novel method of utilizing a microfabricated solid-state quasi-reference electrode (QRE) paired with a pH-insensitive reference field effect transistor (REFET) for detection of real-time pH changes. The end result is a 0.18 mu m, silicon-on-insulator, foundry-fabricated sensor that utilizes a platinum QRE to establish a pH-sensitive fluid gate potential and a PVC membrane REFET to enable pH detection of loop mediated isothermal amplification (LAMP). This technique is highly amendable to commercial scale-up, reduces the packaging and fabrication requirements for ISFET pH detection, and enables massively parallel droplet interrogation for applications, such as monitoring reaction progression in digital PCR.
引用
收藏
页码:6968 / 6975
页数:8
相关论文
共 50 条
  • [1] On-chip metal/polypyrrole quasi-reference electrodes for robust ISFET operation
    Duarte-Guevara, Carlos
    Swaminathan, Vikhram V.
    Burgess, Mark
    Reddy, Bobby, Jr.
    Salm, Eric
    Liu, Yi-Shao
    Rodriguez-Lopez, Joaquin
    Bashir, Rashid
    ANALYST, 2015, 140 (10) : 3630 - 3641
  • [2] On-chip real-time nucleic acid sequence-based amplification for RNA detection and amplification
    Tsaloglou, Maria-Nefeli
    Bahi, Mahadji M.
    Waugh, Edward M.
    Morgan, Hywel
    Mowlem, Matthew
    ANALYTICAL METHODS, 2011, 3 (09) : 2127 - 2133
  • [3] Cell optimisation of supercapacitors using a quasi-reference electrode and potentiostatic analysis
    Le Fevre, Lewis W.
    Fields, Richard
    Redondo, Edurne
    Todd, Rebecca
    Forsyth, Andrew J.
    Dryfe, Robert A. W.
    JOURNAL OF POWER SOURCES, 2019, 424 : 52 - 60
  • [4] On-Chip Stochastic Detection of Silver Nanoparticles without a Reference Electrode
    Figueiredo, Pedro G.
    Grob, Leroy
    Rinklin, Philipp
    Krause, Kay J.
    Wolfrum, Bernhard
    ACS SENSORS, 2018, 3 (01): : 93 - 98
  • [5] CYCLIC VOLTAMMETRY AT MICROELECTRODES IN THE ABSENCE OF ADDED ELECTROLYTE USING A PLATINUM QUASI-REFERENCE ELECTRODE
    BOND, AM
    LAY, PA
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1986, 199 (02): : 285 - 295
  • [6] Integration of plasmonic heating and on-chip temperature sensor for nucleic acid amplification assays
    Monshat, Hosein
    Wu, Zuowei
    Pang, Jinji
    Zhang, Qijing
    Lu, Meng
    JOURNAL OF BIOPHOTONICS, 2020, 13 (07)
  • [7] Liquid dielectrophoresis dispensing of vesicles for on-chip nucleic acid isolation and detection
    Prakash, Ravi
    Kaler, Karan V. I. S.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2013, 432 : 42 - 49
  • [8] Microfluidic chip and isothermal amplification technologies for the detection of pathogenic nucleic acid
    Dongli Gao
    Xudong Guo
    Yi Yang
    Hua Shi
    Rongzhang Hao
    Shengqi Wang
    Zhen Jun Li
    Rongtao Zhao
    Hongbin Song
    Journal of Biological Engineering, 16
  • [9] Microfluidic chip and isothermal amplification technologies for the detection of pathogenic nucleic acid
    Gao, Dongli
    Guo, Xudong
    Yang, Yi
    Shi, Hua
    Hao, Rongzhang
    Wang, Shengqi
    Li, Zhen Jun
    Zhao, Rongtao
    Song, Hongbin
    JOURNAL OF BIOLOGICAL ENGINEERING, 2022, 16 (01)
  • [10] Fluorescence detection in Lab-on-a-chip systems using ultrafast nucleic acid amplification methods
    Gransee, Rainer
    Schneider, Tristan
    Elyorgun, Deniz
    Strobach, Xenia
    Schunck, Tobias
    Gatscha, Theresia
    Hoeth, Julian
    SMART BIOMEDICAL AND PHYSIOLOGICAL SENSOR TECHNOLOGY XI, 2014, 9107