Integration of plasmonic heating and on-chip temperature sensor for nucleic acid amplification assays

被引:7
|
作者
Monshat, Hosein [1 ]
Wu, Zuowei [2 ]
Pang, Jinji [2 ]
Zhang, Qijing [2 ]
Lu, Meng [1 ,3 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Black Engn, Ames, IA USA
[2] Iowa State Univ, Dept Vet Microbiol & Prevent Med, Ames, IA USA
[3] Iowa State Univ, Dept Elect & Comp Engn, 2128 Coover Hall, Ames, IA 50011 USA
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
antibiotic resistance detection; nucleic acid-based diagnostics; photothermal effect; polymer chain reaction; thermocycler; thermoplasmonics; POLYMERASE-CHAIN-REACTION;
D O I
10.1002/jbio.202000060
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Nucleic acid tests have been widely used for diagnosis of diseases by detecting the relevant genetic markers that are usually amplified using polymerase chain reaction (PCR). This work reports the use of a plasmonic device as an efficient and low-cost PCR thermocycler to facilitate nucleic acid-based diagnosis. The thermoplasmonic device, consisting of a one-dimensional metal grating, exploited the strong light absorption of plasmonic resonance modes to heat up PCR reagents using a near-infrared laser source. The plasmonic device also integrated a thin-film thermocouple on the metal grating to monitor the sample temperature. The plasmonic thermocycler is capable of performing a PCR amplification cycle in ~2.5 minutes. We successfully demonstrated the multiplex and real-time PCR amplifications of the antibiotic resistance genes using the genomic DNAs extracted fromAcinetobacter baumannii,Klebsiella pneumonia,Escherichia coliandCampylobacter.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On-chip real-time nucleic acid sequence-based amplification for RNA detection and amplification
    Tsaloglou, Maria-Nefeli
    Bahi, Mahadji M.
    Waugh, Edward M.
    Morgan, Hywel
    Mowlem, Matthew
    [J]. ANALYTICAL METHODS, 2011, 3 (09) : 2127 - 2133
  • [2] Rapid on-site nucleic acid testing: On-chip sample preparation, amplification, and detection, and their integration into all-in-one systems
    Wang, Jingwen
    Jiang, Han
    Pan, Leiming
    Gu, Xiuying
    Xiao, Chaogeng
    Liu, Pengpeng
    Tang, Yulong
    Fang, Jiehong
    Li, Xiaoqian
    Lu, Chenze
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [3] Highly Efficient On-Chip Photothermal Cell Lysis for Nucleic Acid Extraction Using Localized Plasmonic Heating of Strongly Absorbing Au Nanoislands
    Yu, Eun-Sil
    Kang, Byoung-Hoon
    Ahn, Myeong-Su
    Jung, Jik Han
    Park, Ji-Ho
    Jeong, Ki-Hun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (29) : 34323 - 34331
  • [4] Faradaic-free electrokinetic nucleic acid amplification (E-NAAMP) using localized on-chip high frequency Joule heating
    Yost, Jarad
    Gagnon, Zachary
    [J]. BIOMICROFLUIDICS, 2022, 16 (01)
  • [5] Integration of On-Chip Isotachophoresis and Functionalized Hydrogels for Enhanced-Sensitivity Nucleic Acid Detection
    Garcia-Schwarz, Giancarlo
    Santiago, Juan G.
    [J]. ANALYTICAL CHEMISTRY, 2012, 84 (15) : 6366 - 6369
  • [6] A planar fluxgate magnetic sensor for on-chip integration
    Choi, SO
    Kawahito, S
    Takahashi, K
    Matsumoto, Y
    Ishida, M
    Tadokoro, Y
    [J]. SENSORS AND MATERIALS, 1997, 9 (04) : 241 - 252
  • [7] Nucleic acid amplification assays for investigation of respiratory viruses
    Wong, S.
    Pabbaraju, K.
    Khurana, V.
    Pang, X. L.
    Fox, J. D.
    [J]. JOURNAL OF CLINICAL VIROLOGY, 2006, 36 : S18 - S18
  • [8] Translating Nucleic Acid Amplification Assays to the Microscale: Lab on a Chip for Point-of-Care Molecular Diagnostics
    Mauk, Michael G.
    Song, Jinzhao
    Tong, Yubing
    Bau, Haim H.
    Liu, Changchun
    [J]. CURRENT ANALYTICAL CHEMISTRY, 2016, 12 (05) : 386 - 396
  • [9] Capacitive CO2 sensor with on-chip heating
    Technical Univ of Berlin, Berlin, Germany
    [J]. Sens Actuators, B Chem, 1 -3 pt 2 (412-414):
  • [10] A CAPACITIVE CO2 SENSOR WITH ON-CHIP HEATING
    MUTSCHALL, D
    OBERMEIER, E
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 1995, 25 (1-3) : 412 - 414