The sub-Riemannian cut locus of H-type groups

被引:4
|
作者
Autenried, Christian [1 ]
Godoy Molina, Mauricio [1 ,2 ]
机构
[1] Univ Bergen, Dept Math, POB 7803, NO-5020 Bergen, Norway
[2] Univ La Frontera, Dept Matemat & Estad, Ave Francisco Salazer 01145,Casilla 54-D, Temuco, Chile
关键词
Sub-Riemannian geodesics; H-type group; cut locus; HEAT KERNEL;
D O I
10.1002/mana.201400368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we prove that the sub-Riemannian cut locus at the origin of a wide class of nilpotent groups of step two, called H-type groups, corresponds to the center of the group. We obtain this result by completely describing the sub-Riemannian geodesics in the group, and using these to obtain three disjoint sets of points in the group determined by the number of geodesics joining them to the origin. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:4 / 12
页数:9
相关论文
共 50 条
  • [41] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Bizyaev, Ivan A.
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06): : 759 - 774
  • [42] CONJUGATE AND CUT TIME IN THE SUB-RIEMANNIAN PROBLEM ON THE GROUP OF MOTIONS OF A PLANE
    Sachkov, Yuri L.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (04): : 1018 - 1039
  • [43] On sub-Riemannian geodesics on the Engel groups: Hamilton's equations
    Adams, Malcolm R.
    Tie, Jingzhi
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (14-15) : 1381 - 1406
  • [44] Sub-Riemannian structures on 3D lie groups
    A. Agrachev
    D. Barilari
    Journal of Dynamical and Control Systems, 2012, 18 : 21 - 44
  • [45] Geodesics and Curvatures of Special Sub-Riemannian Metrics on Lie Groups
    V. N. Berestovskii
    Siberian Mathematical Journal, 2018, 59 : 31 - 42
  • [46] LENGTH SPECTRA OF SUB-RIEMANNIAN METRICS ON COMPACT LIE GROUPS
    Domokos, Andras
    Krauel, Matthew
    Pigno, Vincent
    Shanbrom, Corey
    VanValkenburgh, Michael
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 296 (02) : 321 - 340
  • [47] Sub-Riemannian structures on 3D lie groups
    Agrachev, A.
    Barilari, D.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (01) : 21 - 44
  • [48] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Ivan A. Bizyaev
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2016, 21 : 759 - 774
  • [49] Geodesics and Curvatures of Special Sub-Riemannian Metrics on Lie Groups
    Berestovskii, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 31 - 42
  • [50] The conformal type and isoperimetric dimension of sub-Riemannian manifolds
    Zorin, VA
    Kesel'man, VM
    RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (04) : 860 - 861