PiF: In-Flash Acceleration for Data-Intensive Applications

被引:4
|
作者
Chun, Myungjun [1 ]
Lee, Jaeyong [1 ]
Lee, Sanggu [1 ]
Kim, Myungsuk [2 ]
Kim, Jihong [1 ]
机构
[1] Seoul Natl Univ, Seoul, South Korea
[2] Kyungpook Natl Univ, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1145/3538643.3539742
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
To minimize unnecessary data movements from storage to a host, processing-in-storage (PiS) techniques, which move a compute unit to storage, have been proposed. In this position paper, we propose an extreme version of PiS solutions, called a processing-in-flash (PiF) scheme, that moves computation inside flash chips where data are physically present. As a key building block of a PiF solution, we present a novel flash chip architecture, CoX. Using a prototype PiF SSD based on CoX chips, we demonstrate that PiF-based SSDs are promising in accelerating data-intensive applications.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 50 条
  • [21] Enhancing Parallelism of Data-Intensive Bioinformatics Applications
    Xie, Zheng
    Han, Liangxiu
    Baldock, Richard
    2013 8TH EUROSIM CONGRESS ON MODELLING AND SIMULATION (EUROSIM), 2013, : 519 - 524
  • [22] Privacy-Aware Data-Intensive Applications
    Guerriero, Michele
    PROCEEDINGS OF THE 2017 32ND IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE'17), 2017, : 1030 - 1033
  • [23] Conceptual modeling of data-intensive Web applications
    Ceri, S
    Fraternali, P
    Matera, M
    IEEE INTERNET COMPUTING, 2002, 6 (04) : 20 - 30
  • [24] Memory Hotspot Optimization for Data-Intensive Applications
    2019 28TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT 2019), 2019, : 466 - 467
  • [25] A dynamically reconfigurable IP for data-intensive applications
    Miyamoto, N
    Karnan, L
    Kotani, K
    Ohmi, T
    PROCEEDINGS OF 2004 IEEE ASIA-PACIFIC CONFERENCE ON ADVANCED SYSTEM INTEGRATED CIRCUITS, 2004, : 404 - 405
  • [26] A framework for the internationalization of data-intensive Web applications
    Belussi, A
    Posenato, R
    WEB ENGINEERING, PROCEEDINGS, 2004, 3140 : 478 - 482
  • [27] Probabilistic advisory systems for data-intensive applications
    Quinn, A
    Ettler, P
    Jirsa, L
    Nagy, I
    Nedoma, P
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2003, 17 (02) : 133 - 148
  • [28] Data-Intensive Computing Acceleration with Python']Python in Xilinx FPGA
    Yang, Yalin
    Xu, Linjie
    Xu, Zichen
    Wang, Yuhao
    DATA QUALITY AND TRUST IN BIG DATA, 2019, 11235 : 111 - 124
  • [29] A Framework for Data Partitioning for C++ Data-Intensive Applications
    A. Milidonis
    G. Dimitroulakos
    M. D. Galanis
    A. P. Kakarountas
    G. Theodoridis
    C. Goutis
    F. Catthoor
    Design Automation for Embedded Systems, 2004, 9 : 101 - 121
  • [30] Model and data engineering for advanced data-intensive systems and applications
    Yassine Ouhammou
    Ladjel Bellatreche
    Mirjana Ivanovic
    Alberto Abelló
    Computing, 2019, 101 : 1391 - 1395