PiF: In-Flash Acceleration for Data-Intensive Applications

被引:4
|
作者
Chun, Myungjun [1 ]
Lee, Jaeyong [1 ]
Lee, Sanggu [1 ]
Kim, Myungsuk [2 ]
Kim, Jihong [1 ]
机构
[1] Seoul Natl Univ, Seoul, South Korea
[2] Kyungpook Natl Univ, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1145/3538643.3539742
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
To minimize unnecessary data movements from storage to a host, processing-in-storage (PiS) techniques, which move a compute unit to storage, have been proposed. In this position paper, we propose an extreme version of PiS solutions, called a processing-in-flash (PiF) scheme, that moves computation inside flash chips where data are physically present. As a key building block of a PiF solution, we present a novel flash chip architecture, CoX. Using a prototype PiF SSD based on CoX chips, we demonstrate that PiF-based SSDs are promising in accelerating data-intensive applications.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 50 条
  • [11] Verification of Data-intensive Web Applications
    Gao, Ju
    Zeng, Hongwei
    Feng, Zhenhua
    ICMECG: 2009 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT, PROCEEDINGS, 2009, : 370 - 375
  • [12] A data placement strategy for data-intensive applications in cloud
    Zheng P.
    Cui L.-Z.
    Wang H.-Y.
    Xu M.
    Jisuanji Xuebao/Chinese Journal of Computers, 2010, 33 (08): : 1472 - 1480
  • [13] Data-Intensive Scalable Computing for Scientific Applications
    Bryant, Randal E.
    COMPUTING IN SCIENCE & ENGINEERING, 2011, 13 (06) : 25 - 33
  • [14] Estimating computation times of data-intensive applications
    Krishnaswamy, Shonali
    Loke, Seng Wai
    Zaslavsky, Arkady
    IEEE Distributed Systems Online, 2004, 5 (04): : 1 - 12
  • [15] IPSO: A Scaling Model for Data-Intensive Applications
    Li, Zhongwei
    Duan, Feng
    Minh Nguyen
    Che, Hao
    Lei, Yu
    Jiang, Hong
    2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 238 - 248
  • [16] Optimizing Interactive Development of Data-Intensive Applications
    Interlandi, Matteo
    Tetali, Sai Deep
    Gulzar, Muhammad Ali
    Noor, Joseph
    Condie, Tyson
    Kim, Miryung
    Millstein, Todd
    PROCEEDINGS OF THE SEVENTH ACM SYMPOSIUM ON CLOUD COMPUTING (SOCC 2016), 2016, : 510 - 522
  • [17] Citus: Distributed PostgreSQL for Data-Intensive Applications
    Cubukcu, Umur
    Erdogan, Ozgun
    Pathak, Sumedh
    Sannakkayala, Sudhakar
    Slot, Marco
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 2490 - 2502
  • [18] Understanding performance of distributed data-intensive applications
    Miceli, Christopher
    Miceli, Michael
    Rodriguez-Milla, Bety
    Jha, Shantenu
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1926): : 4089 - 4102
  • [19] GORDON:. AN IMPROVED ARCHITECTURE FOR DATA-INTENSIVE APPLICATIONS
    Caulfield, Adrian M.
    Grupp, Laura M.
    Swanson, Steven
    IEEE MICRO, 2010, 30 (01) : 121 - 130
  • [20] System dynamics simulations for data-intensive applications
    Neuwirth, Christian
    ENVIRONMENTAL MODELLING & SOFTWARE, 2017, 96 : 140 - 145