Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence

被引:18
|
作者
Maeyama, S. [1 ]
Ishizawa, A. [2 ]
Watanabe, T. -H. [2 ]
Nakata, M. [1 ]
Miyato, N. [1 ]
Yagi, M. [1 ]
Idomura, Y. [3 ]
机构
[1] Japan Atom Energy Agcy, Rokkasho, Aomori 0393212, Japan
[2] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[3] Japan Atom Energy Agcy, Kashiwa, Chiba 2778587, Japan
关键词
RADIAL ELECTRIC-FIELD; H-MODE; POLOIDAL ROTATION; CONFINEMENT BIFURCATION; HIGH-BETA; TRANSITION; SHEAR; FLOW; TRANSPORT; DYNAMICS;
D O I
10.1063/1.4873379
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electromagnetic turbulence driven by kinetic ballooning modes (KBMs) in high-beta plasma is investigated based on the local gyrokinetic model. Analysis of turbulent fluxes, norms, and phases of fluctuations shows that KBM turbulence gives narrower spectra and smaller phase factors than those in ion-temperature-gradient (ITG)-driven turbulence. This leads to the smaller transport fluxes in KBM turbulence than those in ITG turbulence even when they have similar linear growth rates. From the analysis of the entropy balance relation, it is found that the entropy transfer from ions to electrons through the field-particle interactions mainly drives electron perturbations, which creates radial twisted modes by rapid parallel motions of electrons in a sheared magnetic geometry. The nonlinear coupling between the dominant unstable mode and its twisted modes is important for the saturation of KBM turbulence, in contrast to the importance of zonal flow shearing in ITG turbulence. The coupling depends on the flux-tube domain with the one-poloidal-turn parallel length and on the torus periodicity constraint. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Ion temperature gradient driven turbulence with strong trapped ion resonance
    Kosuga, Y.
    Itoh, S-I.
    Diamond, P. H.
    Itoh, K.
    Lesur, M.
    PHYSICS OF PLASMAS, 2014, 21 (10)
  • [32] TOROIDAL ION TEMPERATURE GRADIENT-DRIVEN WEAK TURBULENCE
    MATTOR, N
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (08): : 1913 - 1926
  • [33] TRANSPORT BARRIER IN ION TEMPERATURE-GRADIENT DRIVEN TURBULENCE
    GUZDAR, PN
    DRAKE, JF
    DIMITS, AM
    HASSAM, AB
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (06): : 1381 - 1385
  • [35] THEORY OF NEOCLASSICAL ION TEMPERATURE-GRADIENT-DRIVEN TURBULENCE
    KIM, YB
    DIAMOND, PH
    BIGLARI, H
    CALLEN, JD
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (02): : 384 - 394
  • [36] NUMERICAL SIMULATIONS OF ION TEMPERATURE GRADIENT-DRIVEN TURBULENCE
    OTTAVIANI, M
    ROMANELLI, F
    BENZI, R
    BRISCOLINI, M
    SANTANGELO, P
    SUCCI, S
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01): : 67 - 74
  • [37] Anomalous tungsten transport driven by ion temperature gradient turbulence
    Xu, Shaokang
    Maeyama, S.
    Watanabe, T-H
    NUCLEAR FUSION, 2022, 62 (06)
  • [38] Gyro-Bohm scaling of ion thermal transport from global numerical simulations of ion-temperature-gradient-driven turbulence
    Manfredi, G
    Ottaviani, M
    PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4190 - 4193
  • [39] STABILITY ANALYSIS OF THE ION-TEMPERATURE-GRADIENT-DRIVEN MODE IN NONCIRCULAR TOKAMAK GEOMETRY
    GUO, SC
    ROMANELLI, F
    PHYSICS OF PLASMAS, 1994, 1 (05) : 1101 - 1104
  • [40] Ion-temperature-gradient-driven modes in neoclassical regime
    1600, Publ by American Inst of Physics, Woodbury, NY, USA (05):