Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence

被引:18
|
作者
Maeyama, S. [1 ]
Ishizawa, A. [2 ]
Watanabe, T. -H. [2 ]
Nakata, M. [1 ]
Miyato, N. [1 ]
Yagi, M. [1 ]
Idomura, Y. [3 ]
机构
[1] Japan Atom Energy Agcy, Rokkasho, Aomori 0393212, Japan
[2] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[3] Japan Atom Energy Agcy, Kashiwa, Chiba 2778587, Japan
关键词
RADIAL ELECTRIC-FIELD; H-MODE; POLOIDAL ROTATION; CONFINEMENT BIFURCATION; HIGH-BETA; TRANSITION; SHEAR; FLOW; TRANSPORT; DYNAMICS;
D O I
10.1063/1.4873379
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electromagnetic turbulence driven by kinetic ballooning modes (KBMs) in high-beta plasma is investigated based on the local gyrokinetic model. Analysis of turbulent fluxes, norms, and phases of fluctuations shows that KBM turbulence gives narrower spectra and smaller phase factors than those in ion-temperature-gradient (ITG)-driven turbulence. This leads to the smaller transport fluxes in KBM turbulence than those in ITG turbulence even when they have similar linear growth rates. From the analysis of the entropy balance relation, it is found that the entropy transfer from ions to electrons through the field-particle interactions mainly drives electron perturbations, which creates radial twisted modes by rapid parallel motions of electrons in a sheared magnetic geometry. The nonlinear coupling between the dominant unstable mode and its twisted modes is important for the saturation of KBM turbulence, in contrast to the importance of zonal flow shearing in ITG turbulence. The coupling depends on the flux-tube domain with the one-poloidal-turn parallel length and on the torus periodicity constraint. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] GYROKINETIC SIMULATION OF ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENCE IN 3D TOROIDAL GEOMETRY
    PARKER, SE
    LEE, WW
    SANTORO, RA
    PHYSICAL REVIEW LETTERS, 1993, 71 (13) : 2042 - 2045
  • [22] The kinetic ion-temperature-gradient-driven instability and its localisation
    Rodriguez, E.
    Zocco, A.
    JOURNAL OF PLASMA PHYSICS, 2025, 91 (01)
  • [23] KINETIC-THEORY OF THE ION-TEMPERATURE-GRADIENT-DRIVEN MODE IN THE LONG WAVELENGTH LIMIT
    ROMANELLI, F
    CHEN, L
    BRIGUGLIO, S
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (09): : 2496 - 2505
  • [24] Saturation Mechanism of Decaying Ion Temperature Gradient Driven Turbulence with Kinetic Electrons
    Idomura, Yasuhiro
    PLASMA AND FUSION RESEARCH, 2016, 11 (11)
  • [25] Kinetic simulation of a quasisteady state in collisionless ion temperature gradient driven turbulence
    Watanabe, TH
    Sugama, H
    PHYSICS OF PLASMAS, 2002, 9 (09) : 3659 - 3662
  • [26] ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENCE IN PARTIALLY-IONIZED PLASMAS WITH SHEARED PARALLEL-FLOW
    SHUKLA, PK
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (06): : 1911 - 1913
  • [27] Stability of the ion-temperature-gradient-driven mode with negative magnetic shear
    Uchida, M
    Sen, S
    Fukuyama, A
    McCarthy, DR
    PHYSICS OF PLASMAS, 2003, 10 (12) : 4758 - 4762
  • [28] Kinetic simulation of steady states of ion temperature gradient driven turbulence with weak collisionality
    Watanabe, TH
    Sugama, H
    PHYSICS OF PLASMAS, 2004, 11 (04) : 1476 - 1483
  • [29] A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
    Mavridis, M.
    Isliker, H.
    Vlahos, L.
    Goerler, T.
    Jenko, F.
    Told, D.
    PHYSICS OF PLASMAS, 2014, 21 (10)
  • [30] Electron temperature gradient driven turbulence
    Jenko, F
    Dorland, W
    Kotschenreuther, M
    Rogers, BN
    PHYSICS OF PLASMAS, 2000, 7 (05) : 1904 - 1910