Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence

被引:18
|
作者
Maeyama, S. [1 ]
Ishizawa, A. [2 ]
Watanabe, T. -H. [2 ]
Nakata, M. [1 ]
Miyato, N. [1 ]
Yagi, M. [1 ]
Idomura, Y. [3 ]
机构
[1] Japan Atom Energy Agcy, Rokkasho, Aomori 0393212, Japan
[2] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[3] Japan Atom Energy Agcy, Kashiwa, Chiba 2778587, Japan
关键词
RADIAL ELECTRIC-FIELD; H-MODE; POLOIDAL ROTATION; CONFINEMENT BIFURCATION; HIGH-BETA; TRANSITION; SHEAR; FLOW; TRANSPORT; DYNAMICS;
D O I
10.1063/1.4873379
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electromagnetic turbulence driven by kinetic ballooning modes (KBMs) in high-beta plasma is investigated based on the local gyrokinetic model. Analysis of turbulent fluxes, norms, and phases of fluctuations shows that KBM turbulence gives narrower spectra and smaller phase factors than those in ion-temperature-gradient (ITG)-driven turbulence. This leads to the smaller transport fluxes in KBM turbulence than those in ITG turbulence even when they have similar linear growth rates. From the analysis of the entropy balance relation, it is found that the entropy transfer from ions to electrons through the field-particle interactions mainly drives electron perturbations, which creates radial twisted modes by rapid parallel motions of electrons in a sheared magnetic geometry. The nonlinear coupling between the dominant unstable mode and its twisted modes is important for the saturation of KBM turbulence, in contrast to the importance of zonal flow shearing in ITG turbulence. The coupling depends on the flux-tube domain with the one-poloidal-turn parallel length and on the torus periodicity constraint. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] CONSIDERATIONS OF ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENCE
    COWLEY, SC
    KULSRUD, RM
    SUDAN, R
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (10): : 2767 - 2782
  • [2] ION-TEMPERATURE-GRADIENT-DRIVEN BALLOONING MODE IN TOKAMAKS
    HIROSE, A
    ZHANG, L
    ELIA, M
    PHYSICS OF PLASMAS, 1995, 2 (03) : 859 - 875
  • [3] Effect of triangularity on ion-temperature-gradient-driven turbulence
    Duff, J. M.
    Faber, B. J.
    Hegna, C. C.
    Pueschel, M. J.
    Terry, P. W.
    PHYSICS OF PLASMAS, 2022, 29 (01)
  • [4] THEORY OF ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENCE IN TOKAMAKS
    LEE, GS
    DIAMOND, PH
    PHYSICS OF FLUIDS, 1986, 29 (10) : 3291 - 3313
  • [5] Unanswered questions in ion-temperature-gradient-driven turbulence
    Ottaviani, M
    Beer, MA
    Cowley, SC
    Horton, W
    Krommes, JA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 283 (1-4): : 121 - 146
  • [6] THE TRANSITION TO ION-TEMPERATURE-GRADIENT-DRIVEN PLASMA TURBULENCE
    Krommes, John A.
    FRONTIERS IN TURBULENCE AND COHERENT STRUCTURES, 2007, 6 : 443 - 456
  • [7] Plasma size and collisionality scaling of ion-temperature-gradient-driven turbulence
    Nakata, Motoki
    Idomura, Yasuhiro
    NUCLEAR FUSION, 2013, 53 (11)
  • [8] Comparison between kinetic and fluid simulations of slab ion temperature gradient driven turbulence
    Sugama, H
    Watanabe, TH
    Horton, W
    PHYSICS OF PLASMAS, 2003, 10 (03) : 726 - 736
  • [9] ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENCE AND TRANSPORT IN A SHEARED MAGNETIC-FIELD
    DIMITS, AM
    DRAKE, JF
    GUZDAR, PN
    HASSAM, AB
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (03): : 620 - 626
  • [10] Nonlinear frequency chirping and radial restructure of the ion-temperature-gradient-driven turbulence
    Sun, Shiqiao
    Wang, Zihao
    Wang, Shaojie
    Dai, Zongliang
    NUCLEAR FUSION, 2022, 62 (12)