A NOTE ON A FENYMAN-KAC-TYPE FORMULA

被引:3
|
作者
Balan, Raluca [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2009年 / 14卷
关键词
fractional Brownian motion; stochastic heat equation; Feynman-Kac formula; planar Poisson process; EQUATIONS; NOISE;
D O I
10.1214/ECP.v14-1468
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we establish a probabilistic representation for the second-order moment of the solution of stochastic heat equation in [0,1] x R(d), with multiplicative noise, which is fractional in time and colored in space. This representation is similar to the one given in [8] in the case of an s.p.d.e. driven by a Gaussian noise, which is white in time. Unlike the formula of [8], which is based on the usual Poisson process, our representation is based on the planar Poisson process, due to the fractional component of the noise.
引用
收藏
页码:252 / 260
页数:9
相关论文
共 50 条
  • [31] Kac-Rice formula for transverse intersections
    Michele Stecconi
    Analysis and Mathematical Physics, 2022, 12
  • [32] A remark on Kac’s scattering length formula
    Patrick J. Fitzsimmons
    Ping He
    JianGang Ying
    Science China Mathematics, 2013, 56 : 331 - 338
  • [33] A Feynman-Kac formula for geometric quantization
    Guo, MZ
    Qian, M
    Wang, ZD
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (03): : 238 - 245
  • [34] First order Feynman-Kac formula
    Li, Xue-Mei
    Thompson, James
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (09) : 3006 - 3029
  • [35] Derivation of the Kac formula in the Coulomb gas picture
    Knops, HJF
    Bastiaansen, PJM
    PHYSICA A, 1998, 251 (1-2): : 115 - 131
  • [36] A Feynman-Kac formula for geometric quantization
    郭懋正
    钱敏
    王正栋
    ScienceinChina,SerA., 1996, Ser.A.1996 (03) : 238 - 245
  • [37] COSINE FUNCTIONS AND THE FEYNMAN-KAC FORMULA
    GOLDSTEIN, JA
    QUARTERLY JOURNAL OF MATHEMATICS, 1982, 33 (131): : 303 - 307
  • [38] The modular Weyl-Kac character formula
    Bowman, Chris
    Hazi, Amit
    Norton, Emily
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (04) : 2207 - 2232
  • [39] Kac-Rice formula for transverse intersections
    Stecconi, Michele
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (02)
  • [40] short proof of the Kac-Ward formula
    Lis, Marcin
    ANNALES DE L INSTITUT HENRI POINCARE D, 2016, 3 (01): : 45 - 53