Large-time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN

被引:4
|
作者
Barles, Guy [1 ]
Quaas, Alexander [2 ]
Rodriguez-Paredes, Andrei [3 ]
机构
[1] Univ Orleans, Univ Tours, CNRS, Inst Denis Poisson,UMR 7013, Parc Grandmont, F-37200 Tours, France
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Avda Espana 1680, Valparaiso, Chile
[3] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Avda Libertador Gen Bernardo OHiggins 3383, Santiago, Chile
关键词
Ergodic behavior; Hamilton-Jacobi equations; large-time behavior; unbounded solutions; viscosity solutions; viscous Hamilton-Jacobi equation; ELLIPTIC-EQUATIONS; STOCHASTIC-CONTROL; REGULARITY;
D O I
10.1080/03605302.2020.1846561
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large-time behavior of bounded from below solutions of parabolic viscous Hamilton-Jacobi Equations in the whole space R-N in the case of superquadratic Hamiltonians. Existence and uniqueness of such solutions are shown in a very general framework, namely when the source term and the initial data are only bounded from below with an arbitrary growth at infinity. Our main result is that these solutions have an ergodic behavior when t -> +infinity i.e., they behave like lambda*t + phi(x) where lambda* is the maximal ergodic constant and phi is a solution of the associated ergodic problem. The main originality of this result comes from the generality of the data: in particular, the initial data may have a completely different growth at infinity from those of the solution of the ergodic problem.
引用
收藏
页码:547 / 572
页数:26
相关论文
共 50 条
  • [21] Large time behavior of solutions of Hamilton-Jacobi equations with periodic boundary data
    Mitake, Hiroyoshi
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) : 5392 - 5405
  • [22] A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations
    Davini, Andrea
    Siconolfi, Antonio
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) : 478 - 502
  • [23] Large time behavior of solutions for a class of time-dependent Hamilton-Jacobi equations
    LIU QiHuai
    LI XinXiang
    YAN Jun
    [J]. Science China Mathematics, 2016, 59 (05) : 875 - 890
  • [24] Large time behavior of solutions for a class of time-dependent Hamilton-Jacobi equations
    Liu QiHuai
    Li XinXiang
    Yan Jun
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (05) : 875 - 890
  • [25] Large time behavior of solutions for a class of time-dependent Hamilton-Jacobi equations
    QiHuai Liu
    XinXiang Li
    Jun Yan
    [J]. Science China Mathematics, 2016, 59 : 875 - 890
  • [26] Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations
    Benachour, S
    Karch, G
    Laurençot, P
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (10): : 1275 - 1308
  • [27] Viscosity solutions of general viscous Hamilton-Jacobi equations
    Armstrong, Scott N.
    Tran, Hung V.
    [J]. MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 647 - 687
  • [28] BSDEs with diffusion constraint and viscous Hamilton-Jacobi equations with unbounded data
    Cosso, Andrea
    Huyen Pham
    Xing, Hao
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1528 - 1547
  • [29] A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians
    Cagnetti, Filippo
    Gomes, Diogo
    Mitake, Hiroyoshi
    Tran, Hung V.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01): : 183 - 200
  • [30] On large solutions for fractional Hamilton-Jacobi equations
    Davila, Gonzalo
    Quaas, Alexander
    Topp, Erwin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,