Large time behavior of solutions for a class of time-dependent Hamilton-Jacobi equations

被引:4
|
作者
Liu QiHuai [1 ,2 ]
Li XinXiang [3 ]
Yan Jun [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Peoples R China
[3] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
asymptotic behavior; viscosity solution; weak KAM theory; Hamilton-Jacobi equation; DEFINITE LAGRANGIAN SYSTEMS; LAX-OLEINIK SEMIGROUP; EUCLIDEAN-N-SPACE; WEAK KAM THEOREM; ASYMPTOTIC SOLUTIONS; PERIODIC-SOLUTIONS; CONVERGENCE; CONVEX;
D O I
10.1007/s11425-015-5102-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behavior of viscosity solutions for time-dependent Hamilton-Jacobi equations by the dynamical approach based on weak KAM (Kolmogorov-Arnold-Moser) theory due to Fathi. We establish a general convergence result for viscosity solutions and adherence of the graph as t -> infinity.
引用
收藏
页码:875 / 890
页数:16
相关论文
共 50 条