De Morgan property for effect algebras of von Neumann algebras

被引:5
|
作者
Cattaneo, G
Hamhalter, J
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, I-20126 Milan, Italy
[2] Czech Tech Univ, Fac Elect Engn, Dept Math, Prague 16627 6, Czech Republic
关键词
von Neumann algebras; de Morgan Brouwer-Zadeh algebras; unsharp quantum mechanics;
D O I
10.1023/A:1015584530597
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the unit interval of a von Neumann algebra is a Sum Brouwer-Zadeh algebra when equipped with another unary operation sending each element to the complement of its range projection. The main result of this Letter says that a von Neumann algebra is finite if and only if the corresponding Brouwer-Zadeh structure is de Morgan or, equivalently, if the range projection map preserves infima in the unit interval. This provides a new characterization of finiteness in the Murray-von Neumann structure theory of von Neumann algebras in terms of Brouwer-Zadeh structures.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条