von Neumann algebras;
de Morgan Brouwer-Zadeh algebras;
unsharp quantum mechanics;
D O I:
10.1023/A:1015584530597
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
It is shown that the unit interval of a von Neumann algebra is a Sum Brouwer-Zadeh algebra when equipped with another unary operation sending each element to the complement of its range projection. The main result of this Letter says that a von Neumann algebra is finite if and only if the corresponding Brouwer-Zadeh structure is de Morgan or, equivalently, if the range projection map preserves infima in the unit interval. This provides a new characterization of finiteness in the Murray-von Neumann structure theory of von Neumann algebras in terms of Brouwer-Zadeh structures.