Subharmonicity in von Neumann algebras

被引:0
|
作者
Ransford, T [1 ]
Valley, M [1 ]
机构
[1] Univ Laval, Dept Math & Stat, Ste Foy, PQ G1K 7P4, Canada
关键词
von Neumann algebra; singular value; trace; determinant; subharmonic function;
D O I
10.4064/sm170-3-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a von Neumann algebra with unit 1(M). Let tau be a faithful, normal, semifinite trace on M. Given x epsilon M, denote by mu(t)(x)t >= o the generalized s-numbers of x, defined by mu(t)(x) = inf{parallel to xe parallel to : e is a projection in M with tau(1(M) - e) <= t} (t >= 0). We prove that, if D is a complex domain and f : D -> M is a holomorphic function, then, for each t >= 0, lambda -> integral(0)(t) log mu(s) (f (lambda)) ds is a subharmonic function on D. This generalizes earlier subharmonicity results of White and Aupetit on the singular values of matrices.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 50 条