On the Exact Complexity of Hamiltonian Cycle and q-Colouring in Disk Graphs

被引:7
|
作者
Kisfaludi-Bak, Sandor [1 ]
van der Zanden, Tom C. [2 ]
机构
[1] TU Eindhoven, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Univ Utrecht, Dept Comp Sci, Utrecht, Netherlands
来源
关键词
D O I
10.1007/978-3-319-57586-5_31
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the exact complexity of the Hamiltonian Cycle and the q-Colouring problem in disk graphs. We show that the Hamiltonian Cycle problem can be solved in 2(O)(root n) on n-vertex disk graphs where the ratio of the largest and smallest disk radius is O(1). We also show that this is optimal: assuming the Exponential Time Hypothesis, there is no 2(o)(root n)-time algorithm for Hamiltonian Cycle, even on unit disk graphs. We give analogous results for graph colouring: under the Exponential Time Hypothesis, for any fixed q, q-Colouring does not admit a 2(o)(root n)-time algorithm, even when restricted to unit disk graphs, and it is solvable in 2O(root n)-time on disk graphs.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 50 条
  • [21] Narrowing the Complexity Gap for Colouring (Cs, Pt)-Free Graphs
    Huang, Shenwei
    Johnson, Matthew
    Paulusma, Daniel
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2014, 2014, 8546 : 162 - 173
  • [22] Filling the complexity gaps for colouring planar and bounded degree graphs
    Dabrowski, Konrad K.
    Dross, Francois
    Johnson, Matthew
    Paulusma, Daniel
    JOURNAL OF GRAPH THEORY, 2019, 92 (04) : 377 - 393
  • [23] Cycle extendability of Hamiltonian interval graphs
    Chen, Guantao
    Faudree, Ralph J.
    Gould, Ronald J.
    Jacobson, Michael S.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (03) : 682 - 689
  • [24] On the Cycle Spectrum of Cubic Hamiltonian Graphs
    Muettel, Janina
    Rautenbach, Dieter
    Regen, Friedrich
    Sasse, Thomas
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1067 - 1076
  • [25] On the Cycle Spectrum of Cubic Hamiltonian Graphs
    Janina Müttel
    Dieter Rautenbach
    Friedrich Regen
    Thomas Sasse
    Graphs and Combinatorics, 2013, 29 : 1067 - 1076
  • [26] A CYCLE STRUCTURE THEOREM FOR HAMILTONIAN GRAPHS
    SCHMEICHEL, EF
    HAKIMI, SL
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (01) : 99 - 107
  • [27] Interchange graphs and the Hamiltonian cycle polytope
    Sierksma, G
    DISCRETE APPLIED MATHEMATICS, 1998, 81 (1-3) : 217 - 224
  • [28] On the square of a Hamiltonian cycle in dense graphs
    Komlos, J
    Sarkozy, GN
    Szemeredi, E
    RANDOM STRUCTURES & ALGORITHMS, 1996, 9 (1-2) : 193 - 211
  • [29] HAMILTONIAN CYCLE IS POLYNOMIAL ON COCOMPARABILITY GRAPHS
    DEOGUN, JS
    STEINER, G
    DISCRETE APPLIED MATHEMATICS, 1992, 39 (02) : 165 - 172
  • [30] HAMILTONIAN CHORDAL GRAPHS ARE NOT CYCLE EXTENDABLE
    Lafond, Manuel
    Seamone, Ben
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (02) : 877 - 887