On the Exact Complexity of Hamiltonian Cycle and q-Colouring in Disk Graphs

被引:7
|
作者
Kisfaludi-Bak, Sandor [1 ]
van der Zanden, Tom C. [2 ]
机构
[1] TU Eindhoven, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Univ Utrecht, Dept Comp Sci, Utrecht, Netherlands
来源
关键词
D O I
10.1007/978-3-319-57586-5_31
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the exact complexity of the Hamiltonian Cycle and the q-Colouring problem in disk graphs. We show that the Hamiltonian Cycle problem can be solved in 2(O)(root n) on n-vertex disk graphs where the ratio of the largest and smallest disk radius is O(1). We also show that this is optimal: assuming the Exponential Time Hypothesis, there is no 2(o)(root n)-time algorithm for Hamiltonian Cycle, even on unit disk graphs. We give analogous results for graph colouring: under the Exponential Time Hypothesis, for any fixed q, q-Colouring does not admit a 2(o)(root n)-time algorithm, even when restricted to unit disk graphs, and it is solvable in 2O(root n)-time on disk graphs.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 50 条
  • [11] Biclique-colouring verification complexity and biclique-colouring power graphs
    Macedo Filho, H. B.
    Dantas, S.
    Machado, R. C. S.
    Figueiredo, C. M. H.
    DISCRETE APPLIED MATHEMATICS, 2015, 192 : 65 - 76
  • [12] On the complexity of role colouring planar graphs, trees and cographs
    Purcell, Christopher
    Rombach, Puck
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 35 : 1 - 8
  • [13] The complexity of H-colouring of bounded degree graphs
    Galluccio, A
    Hell, P
    Nesetril, J
    DISCRETE MATHEMATICS, 2000, 222 (1-3) : 101 - 109
  • [14] On the Complexity of Rainbow Vertex Colouring Diametral Path Graphs
    Dyrseth, Jakob
    Lima, Paloma T.
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 248
  • [15] Cycle spectra of Hamiltonian graphs
    Milans, Kevin G.
    Pfender, Florian
    Rautenbach, Dieter
    Regen, Friedrich
    West, Douglas B.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (04) : 869 - 874
  • [16] Complexity of Hamiltonian Cycle Reconfiguration
    Takaoka, Asahi
    ALGORITHMS, 2018, 11 (09):
  • [17] Approximate Strong Edge-Colouring of Unit Disk Graphs
    Grelier, Nicolas
    de Verclos, Remi de Joannis
    Kang, Ross J.
    Pirot, Francois
    APPROXIMATION AND ONLINE ALGORITHMS (WAOA 2019), 2020, 11926 : 154 - 169
  • [18] Narrowing the Complexity Gap for Colouring (Cs, Pt)-Free Graphs
    Huang, Shenwei
    Johnson, Matthew
    Paulusma, Daniel
    COMPUTER JOURNAL, 2015, 58 (11): : 3074 - 3088
  • [19] The Complexity of 3-Colouring H-Colourable Graphs
    Krokhin, Andrei
    Oprsal, Jakub
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 1227 - 1239
  • [20] On the complexity of k-rainbow cycle colouring problems
    Li, Shasha
    Shi, Yongtang
    Tu, Jianhua
    Zhao, Yan
    DISCRETE APPLIED MATHEMATICS, 2019, 264 : 125 - 133