On the Exact Complexity of Hamiltonian Cycle and q-Colouring in Disk Graphs

被引:7
|
作者
Kisfaludi-Bak, Sandor [1 ]
van der Zanden, Tom C. [2 ]
机构
[1] TU Eindhoven, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Univ Utrecht, Dept Comp Sci, Utrecht, Netherlands
来源
关键词
D O I
10.1007/978-3-319-57586-5_31
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the exact complexity of the Hamiltonian Cycle and the q-Colouring problem in disk graphs. We show that the Hamiltonian Cycle problem can be solved in 2(O)(root n) on n-vertex disk graphs where the ratio of the largest and smallest disk radius is O(1). We also show that this is optimal: assuming the Exponential Time Hypothesis, there is no 2(o)(root n)-time algorithm for Hamiltonian Cycle, even on unit disk graphs. We give analogous results for graph colouring: under the Exponential Time Hypothesis, for any fixed q, q-Colouring does not admit a 2(o)(root n)-time algorithm, even when restricted to unit disk graphs, and it is solvable in 2O(root n)-time on disk graphs.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 50 条
  • [1] Exact algorithms for the Hamiltonian cycle problem in planar graphs
    Deineko, VG
    Klinz, B
    Woeginger, GJ
    OPERATIONS RESEARCH LETTERS, 2006, 34 (03) : 269 - 274
  • [2] Colouring exact distance graphs of chordal graphs
    Quiroz, Daniel A.
    DISCRETE MATHEMATICS, 2020, 343 (05)
  • [3] On the Complexity of Colouring Antiprismatic Graphs
    Preissmann, Myriam
    Robin, Cleophee
    Trotignon, Nicolas
    ALGORITHMICA, 2021, 83 (02) : 589 - 612
  • [4] On the Complexity of Colouring Antiprismatic Graphs
    Myriam Preissmann
    Cléophée Robin
    Nicolas Trotignon
    Algorithmica, 2021, 83 : 589 - 612
  • [6] ON THE PARALLEL COMPLEXITY OF HAMILTONIAN CYCLE AND MATCHING PROBLEM ON DENSE GRAPHS
    DAHLHAUS, E
    HAJNAL, P
    KARPINSKI, M
    JOURNAL OF ALGORITHMS, 1993, 15 (03) : 367 - 384
  • [7] COLOURING STABILITY TWO UNIT DISK GRAPHS
    Bruhn, Henning
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2013, 8 (02) : 60 - 74
  • [8] Improper colouring of (random) unit disk graphs
    Kang, Ross J.
    Muller, Tobias
    Sereni, Jean-Sebastien
    DISCRETE MATHEMATICS, 2008, 308 (08) : 1438 - 1454
  • [9] A tight bound for online colouring of disk graphs
    Caragiannis, Ioannis
    Fishkin, Aleksei V.
    Kaklamanis, Christos
    Papaioannou, Evi
    THEORETICAL COMPUTER SCIENCE, 2007, 384 (2-3) : 152 - 160
  • [10] On the complexity of H-colouring planar graphs
    MacGillivray, G.
    Siggers, M.
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5729 - 5738