LINEABILITY, SPACEABILITY, AND ALGEBRABILITY OF CERTAIN SUBSETS OF FUNCTION SPACES

被引:31
|
作者
Garcia-Pacheco, F. J. [1 ]
Martin, M. [2 ]
Seoane-Sepulveda, J. B. [3 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[3] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2009年 / 13卷 / 04期
关键词
Riemann integrable; Lebesgue integrable; Continuous unbounded functions; Lineability; Spaceability; Algebrability; BANACH-SPACES; SUBSPACES; SETS;
D O I
10.11650/twjm/1500405506
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct infinite-dimensional Banach spaces and infinitely generated Banach algebras of functions that, except for 0, satisfy some kind of special or pathological property. Three of these structures are: a Banach algebra of everywhere continuous bounded functions which are not Riemann-integrable; a Banach space of Lebesgue-integrable functions that are not Riemann-integrable; an algebra of continuous unbounded functions defined on an arbitrary non-compact metric space.
引用
收藏
页码:1257 / 1269
页数:13
相关论文
共 50 条
  • [1] Dense lineability and spaceability in certain subsets of l∞$\ell _{\infty }$
    Leonetti, Paolo
    Russo, Tommaso
    Somaglia, Jacopo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (05) : 2283 - 2303
  • [2] SPACEABILITY AND ALGEBRABILITY IN (DFC)-SPACES
    Alves, Thiago R.
    COLLOQUIUM MATHEMATICUM, 2020, 160 (01) : 89 - 107
  • [3] Lineability, spaceability, and latticeability of subsets of C([0, 1]) and Sobolev spaces
    J. Carmona Tapia
    J. Fernández-Sánchez
    J. B. Seoane-Sepúlveda
    W. Trutschnig
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [4] Lineability and algebrability within p-adic function spaces
    Khodabandehlou, J.
    Maghsoudi, S.
    Seoane-Sepulveda, J. B.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2020, 27 (05) : 711 - 729
  • [5] Lineability, spaceability, and latticeability of subsets of C([0,1]) and Sobolev spaces
    Tapia, J. Carmona
    Fernandez-Sanchez, J.
    Seoane-Sepulveda, J. B.
    Trutschnig, W.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [6] Lineability in subsets of measure and function spaces
    Munoz-Fernandez, G. A.
    Palmberg, N.
    Puglisi, D.
    Seoane-Sepulveda, J. B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) : 2805 - 2812
  • [7] Nonlinear subsets of function spaces and spaceability
    Ruiz, Cesar
    Sanchez, Victor M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 463 : 56 - 67
  • [8] Lineability and spaceability on vector-measure spaces
    Barbieri, Giuseppina
    Garcia-Pacheco, Francisco J.
    Puglisi, Daniele
    STUDIA MATHEMATICA, 2013, 219 (02) : 155 - 161
  • [9] Spaceability and algebrability in the theory of domains of existence in Banach spaces
    Thiago R. Alves
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 461 - 470
  • [10] Spaceability and algebrability in the theory of domains of existence in Banach spaces
    Alves, Thiago R.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 461 - 470